
Cover Story: Creating a Custom Layout Joseph Cozad

Manager Dealing with problems when your manager can’t 8

What AWT Version Do You Use? Andrei Cioroianu
Force components to use 1.1 and discover those that use 1.0 16

Case Study: Large Scale Software Sriram Sankar

Development in Java Issues and solutions 38

Active Menus Without Graphics Ken Jenks
For Web pages using cascading style sheets, layers and JavaScript 43

Under the Sun: Handling the Load Matt Evans
Peak application performance with JavaLoad load testing software 48

Persistence in Enterprise JavaBeans Patrick Ravenel
Bean- and container-managed EntityBean persistence and their merit 50

Software Engineering in Startups Part 2 Juergen Brendel
The life-cycle stages and tracking of requirements 56

Product Reviews
Vision Jade 4.0

by Jim Milbery pg.34
...

Emblaze Audio/Video
by David Jung pg.30

Straight Talking
Beautiful Things Come

in Small Bundles
by AlanWilliamson pg.27

Widget Factory
JComponentTree

by Claude Duguay pg.22

Why Superman
Works Alone

by Sean Rhody pg.5

When Do We
Reach Nirvana?

by Thomas Murphy pg.7

The Grind
SQL Results from an
Application Server
by Java George pg.66

IMHO
Java Development
Tools in Transition
by Paul Petersen pg.60

Volume:3 Issue:10, 1998

J a v a D e v e l o p e r s J o u r n a l . c o m

JAVABEANS IN ENTERPRISE pg.50JAVABEANS IN ENTERPRISE pg.50JAVABEANS IN ENTERPRISE pg.50
TM

RETAILERS PLEASE DISPLAY
UNTIL DECEMBER 10, 1998

Graphical
Development
Process in

Enterprise
JavaBeans

2 • VOLUME: 3 ISSUE: 10 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

RogueWave
StudioJ

http://www.roguewave.com/ad/studioj

3VOLUME: 3 ISSUE: 10 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

ProtoView
JSuite

http://www.protoview.com

4 • VOLUME: 3 ISSUE: 10 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Schlumberger
Cyberflex

http://www.cyberlfex.slb.com

5VOLUME: 3 ISSUE: 10 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Toward the end of the last Batman movie,
when Robin is giving Batman a hard time,
George Clooney gets fed up and says, “This is
why Superman works alone.” While I’m often
tempted to think along the same lines, the
reality of our business is that we work in
teams. This leads to the topic of this month’s
diatribe: team development.

Large-scale software development is a
complex process. The majority of it takes
place in a corporate environment that
requires rigor and process. The most familiar
of these processes is usually the task of
obtaining the blessing of the DBA for your
database schema, or for changes you need to
make to it. Due to the nature of the corporate
database, the DBA process is almost an
island unto itself. I’ll rant about that some
other time because right now I’m interested
in team development and its partner – con-
figuration management.

It’s my belief that the companies creating
source code control tools today are missing
the big picture. You’ll notice that I said “con-
figuration management” in the previous para-
graph and “source code control” in this one.
In my mind there’s a big difference between
them; while source code control is vital to
any project and is indeed part of configura-
tion management, it is by no means the whole
picture. Mention configuration management
to a typical project team and you’ll get an
answer like, “Oh yeah, we use…” (which can
be filled in with any of the current generation
of source code control tools).

Unfortunately, this misses the point of con-
figuration management because it addresses
only a small portion of the entire task – the
part relating to developers. The typical config-
uration-management dilemma encompasses
tasks such as unit, system and integration
testing; software builds and deployment; and,
in the era of multitiered Web applications, dis-
tribution and registration issues.

We need to establish a set of standards for
these practices so they can be automated
and controlled. It’s a complex issue, but
that’s the whole point of paying a good deal
of money to a vendor to come up with a solu-
tion. Every time we begin a new project we
have to tackle the same issues over and over.
This is an opportunity for an up-and-coming
ISV to create a new product line and domi-
nate the industry.

What we need is a meta tool – one that’s
language-independent but can interact with
any of the major development environments.
It could start with source code control. Most
organizations I’ve worked with don’t allow
developers to directly create executables –

as part of the QA process the testing team
usually creates them. And they typically suf-
fer from a lack of expertise in doing just that
because their main focus is on testing, not
building. The first step would be automating
the build process, then representing it in a
graphical manner that makes it easy to define
and automate. Please don’t tell me about
nmake or other command line utilities – it’s
been my experience that people who are typ-
ically charged with the build process aren’t
the kind of heads-down developers who can
make that kind of tool workable. A simple
graphic tool is needed.

The next step is to establish standards for
code deployment and registration. Most mul-
titiered environments use some sort of appli-
cation server, be it MTS, Jaguar CTS, Tuxe-
do/M3 or one of the CORBA Orbs. As code is
produced, and as it changes, redeployment
and registration of components within these
servers become an issue. The establishment
of a common mechanism for supporting this
process would enable our new meta tool to
automate this process. I spent a great deal of
time on a recent project ensuring that regis-
tration and CLSIDs were current. It was large-
ly a mechanical process that didn’t need to
eat up a lot of time if a tool had been available.

Hand in hand with the application server
deployment is the replication of environ-
ments. In most cases the code above goes to
more than one application server (develop-
ment, testing, various production systems,
etc.). Perhaps a publish-and subscribe para-
digm, with the meta tool being the publisher,
would be appropriate.

Finally, deployment and synchronization
of the client code is still an issue. Fortunate-
ly, we’ve had more time to think about this
one, thanks to client/server, and there are
tools available to help. Unfortunately, none
that I’m aware of tie into a more global model,
so even with these tools you have some type
of routine setup and maintenance.

I’m not holding my breath waiting for this
meta tool. Having wrestled with these issues
for years, I know how difficult it is to establish
a set of vendor-neutral standards and get the
industry to adhere to them. But I do know we
need them. In the meantime, I’m going to take
my Kryptonite laptop somewhere quiet and
do some real coding. Up, up and away.

About the Author
Sean Rhody is editor-in-chief of Java Developer's
Journal. He is also a senior consultant with Comput-
er Sciences Corporation where he specializes in
application architecture, particularly distributed sys-
tems. You can contact Sean at sean@sys-con.com.

Why Superman
Works Alone

FROM THE EDITOR

Sean Rhody, Editor-in-Chief
EDITORIAL ADVISORY BOARD

Ted Coombs, Bill Dunlap, David Gee, Arthur van Hoff,
Brian Maso, Miko Matsumura Kim Polese,

Sean Rhody, Rick Ross, Richard Soley, George Paolini
Editor-in-Chief: Sean Rhody

Art Director: Jim Morgan
Executive Editor: Scott Davison
Managing Editor: Anita Hartzfeld

Senior Editor: M’lou Pinkham
Editorial Assistant: Brian Christensen

Technical Editor: Bahadir Karuv
Visual J++ Editor: Ed Zebrowski

Visual Café Pro Editor: Alan Williamson
Product Review Editor: Jim Mathis

Games & Graphics Editor: Eric Ries
Tips & Techniques Editor: Brian Maso

WRITERS IN THIS ISSUE
Juergen Brendel, Andrei Cioroianu, Joseph Cozad

Claude Duguay, Matt Evans, Ken Jenks, David Jung,
George Kassabgi, Jim Milbery, Thomas Murphy, Paul Petersen,
Patrick Ravenel, Sean Rhody, Sriram Sankar, Alan Williamson

SUBSCRIPTIONS
For subscriptions and requests for bulk orders,

please send your letters to Subscription Department

Subscription Hotline: 800 513-7111
Cover Price: $4.99/issue.

Domestic: $49/yr. (12 issues) Canada/Mexico: $69/yr.
Overseas: Basic subscription price plus air-mail postage

(U.S. Banks or Money Orders). Back Issues: $12 each

Publisher, President and CEO: Fuat A. Kircaali
Vice President, Production: Jim Morgan
Vice President, Marketing: Carmen Gonzalez

Advertising Manager: Claudia Jung
Advertising Assistants: Robin Forma

Jaclyn Redmond
Accounting: Ignacio Arellano

Graphic Designers: Robin Groves
Alex Botero

Webmaster: Robert Diamond
Senior Web Designer: Corey Low

Customer Service: Sian O’Gorman
Paula Horowitz

Online Customer Service: Mitchell Lowe
Customer Service Interns: Angela Frasco

Ann Marie Mililo

EDITORIAL OFFICES
SYS-CON Publications, Inc.

39 E. Central Ave., Pearl River, NY 10965
Telephone: 914 735-1900 Fax: 914 735-3922

Subscribe@SYS-CON.com
JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944) is

published monthly (12 times a year) for $49.00 by SYS-CON
Publications, Inc., 39 E. Central Ave., Pearl River, NY 10965-2306.

Application to mail at Periodicals Postage rates is pending at
Pearl River, NY 10965 and additional mailing offices.

POSTMASTER: Send address changes to:
JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,

39 E. Central Ave., Pearl River, NY 10965-2306.

© COPYRIGHT
Copyright © 1998 by SYS-CON Publications, Inc. All rights reserved. No part of this
publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopy or any information storage and retrieval system,

without written permission. For promotional reprints, contact reprint coordinator.
SYS-CON Publications, Inc. reserves the right to revise, republish and authorize

its readers to use the articles submitted for publication.

ISSN # 1087-6944

Worldwide Distribution by
Curtis Circulation Company

739 River Road, New Milford NJ 07646-3048 Phone: 201 634-7400

Java and Java-based marks are trademarks or registered trademarks
of Sun Microsystems, Inc. in the United States and other countries.

SYS-CON Publications, Inc. is independent of Sun Microsystems, Inc.
All brand and product names used on these pages are trade names,

service marks or trademarks of their respective companies.

SYS-CON
PUBLICATIONS

6 • VOLUME: 3 ISSUE: 10 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Zero G
InstallAnywhere

http://www.zerog.com/jdj

7VOLUME: 3 ISSUE: 10 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

In some form or another it seems that
this question is on the minds of every pro-
grammer, manager and CIO in the world.
Each day another hundred monkeys intro-
duce the new savior of the world, with the
promise of previously unknown productivi-
ty and an end to all programming problems.

Will you be saved by JINI? Find your
place in the sun with JavaSpaces? Or will
HotSpot be your ticket to programming
paradise? I would venture that none will
do the trick because they’re just technolo-
gies. Yes, they may make aspects of the job
better but they won’t put you into a funda-
mentally new state of programming happi-
ness. To really move forward requires
process and knowledge.

Just as information is the most impor-
tant asset of a company, it’s the most
important asset you possess as a pro-
grammer. As you may have learned watch-
ing Schoolhouse Rock on Saturday morn-
ings, “Knowledge is power.” You can have
the most expensive rod and a tacklebox
filled with a hundred flies but if you don’t
know how to cast you won’t catch a fish.
Even if you can cast, without studying the
streambed and looking for other important
indicators you’ll only end up with tired
arms and sore feet.

The Gartner Group elucidates Java’s
main problem that no technology can
solve: “A severe shortage of skilled Java
developers is placing new Java projects in
jeopardy in more than 30% of AD organiza-
tions making a transition to the new lan-
guage and platform” (Application Develop-
ment and Management Strategies research
note, 28 May 1998). It points out that it
really doesn’t make any difference if you
are a COBOL, VisualBasic or C++ develop-
er. It doesn’t matter, per se, that you’ve
been fishing before and know how to cast
with tackle and worms – distributed object
computing, or fly-fishing, is a completely
different art.

Like fly-fishing, you can’t simply read a
book and walk out to the stream an expert.
To really learn and excel you must work
with another person who knows the
stream and the craft. I’ve always pushed
back on the notion of software engineer-
ing. It’s not that I don’t believe in the use-

fulness of modeling tools, good documen-
tation and coding practices; it’s more that
I don’t think you can learn all you need to
know about programming by simply read-
ing a book and learning the standard tem-
plates. These are the things that come
with experience and, in effect, are best
passed down through an “oral tradition.”

While the technological advances in
Java will make it easier to do things like
create distributed applications, the devel-
oper still has to think through the applica-
tion architecture. A good example, ease of
use, that many have seen leading to poor
results is in the area of threads. Creating
multithreaded applications is a snap with
Java. However, spawning threads without
thought will lead to failure, and new issues
like transactional integrity and non-uni-
form VM implementations will arise.

Fortunately, the road we travel is one
that’s been traveled before. Distributed
CORBA-based Smalltalk systems are run-
ning major business systems around the
world. CORBA technologies have evolved
through several iterations to become
portable and cover core architecture,
design and base business objects. There
are good books on fundamental patterns,
tools that help you understand object rela-
tionships and full-spectrum training to
build your core techniques. The waters
have been fished before and there are
great mentors who can amplify this book
knowledge with the wisdom of experience.

Now is a great time to gain experience
and learn to read the waters. While main-
stream IS fixes and tests Y2K problems,
you can learn good distributed architec-
ture. Find a guide who knows the waters
and has seen the flies that work and the
ones that don’t. Then your tacklebox will
not only be filled with great-looking tools,
but you’ll be able to apply them with skill –
and you’ll have entered a higher program-
ming plane.

About the Author
Thomas Murphy is the director of marketing for
ObjectShare. He’s acted as the product manager
for ObjectShare’s PARTS for Java and Visual
Smalltalk product lines. You can e-mail him at
tmurphy@objectshare.com.

When Do We
Reach Nirvana?

GUEST EDITORIAL

Thomas Murphy

CALL FOR SUBSCRIPTIONS

1 800 513-7111
International Subscriptions

& Customer Service Inquiries
914 735-1900

or by fax: 914 735-3922

E-Mail: Subscribe@SYS-CON.com
http://www.SYS-CON.com

MAIL All Subscription Orders or
Customer Service Inquiries to:

EDITORIAL OFFICES
Phone: 914 735-7300

Fax: 914 735-3922

ADVERTISING & SALES OFFICE
Phone: 914 735-0300

Fax: 914 735-7302

CUSTOMER SERVICE
Phone: 914 735-1900

Fax: 914 735-3922

DESIGN & PRODUCTION
Phone: 914 735-7300

Fax: 914 735-6547

WORLDWIDE DISTRIBUTION by
Curtis Circulation Company

739 River Road, New Milford, NJ 07646-3048
Phone: 201 634-7400

DISTRIBUTED in the USA by
International Periodical Distributors

674 Via De La Valle, Suite 204
Solana Beach, CA 92075

Phone: 619 481-5928

SYS-CON
PUBLICATIONS

DEVELOPER’S

JOURNAL

SYS-CON Publications
CONTACT ESSENTIALS

SYS-CON Publications
CONTACT ESSENTIALS

PowerBuilder Developer’s Journal
http://www.PowerBuilderJournal.com

Cold Fusion Developer’s Journal
http://www.ColdFusionJournal.com

VRML Developer’s Journal
http://www.VRMLDevelopersJournal.com

Secrets of the PowerBuilder Masters
http://www.PowerBuilderBooks.com

Java Developer’s Journal
http://www.JavaDeveloperJournal.com

A layout manager is an object that positions and

resizes components within a display area according to a

specific algorithm. The Java 1.2 AWT package provides 10 layout

manager classes that can be used to accomplish this task. Each has a

defined set of behaviors that organize components in a container. Each

Java container instance is associated with an instance of one of these

layout managers. By nesting one container/layout manager combination

within another one, complex screen layouts can be implemented.

by Joseph Cozad

8 • VOLUME: 3 ISSUE: 10 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Creating
a Custom
Layout
Manager

Creating
a Custom
Layout
Manager

JDJ COVER STORY

Dealing with specific
problems when your
layout manager can’t

9VOLUME: 3 ISSUE: 10 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Sometimes the
layout managers don’t

individually meet all the
layout requirements need-

ed to implement a particu-
lar GUI design. And in the

case of complex layout designs,
nesting container/layout manag-

er combinations can produce code
that is hard to understand. This arti-

cle discusses what a layout manager is
and how it is implemented in Java.

Through a real-world example it demonstrates how a layout manager
can be created to address any GUI layout situation without the need
to nest container/layout manager combinations.

Layout Requirements
The GUI design for the example required that component

locations be specified using a grid system of cells in which each
cell was easily identifiable. The cells needed to be the same size
and immutable, so an individual cell’s size could be altered only
if the container’s overall size were also altered, and then only in

proportion to the size change.
To accommodate a component larger than an individual cell,

two or more cells could be combined horizontally or vertically (or
both), creating a cell area addressed by the identity of the first cell
in the upper-left corner of the area. This functionality is similar in
design to the colspan and rowspan attributes in HTML tables.

Component locations within a cell area need to be specified in
one of three ways:

1. By a default value (the center of the cell area)
2. By a predefined general location, such as top left,

right, bottom right
3. By a user-defined point within the cell area

In addition, components within the contain-
er could not lose their positions relative to the

edges of the container when the container’s
size changed.
Components needed to maintain their size rela-

tive to the size of the container so that as the con-
tainer enlarged or shrank, the components enlarged

or shrank proportionally. Also, the specified initial
size of the component could not be altered to fill a cell

that was larger than the component; that is, component
size integrity had to be maintained. The layout manager

was required to provide a way to calculate the size of a
component based on cell area size to assist in setting a

component’s size relative to the size of the container.
No limitation was placed on the num-

ber of components that could be added to
a cell area. This meant that components
could be overlapped and that overlapping
should be done in a back-to-front manner.
That is, component B added to the same
container cell area as, and after, compo-
nent A would lie on top of component A.

Design Choices
Because the requirements describe a

method for laying out components based
on a grid pattern, a designer might be led

to use the GridLayout or GridBagLayout classes. While
both provide a grid system, their limitations make them

an inadequate solution for these requirements.
The GridLayout organizes components by dividing the display

area into a grid of equal-sized cells numbered 0 to n from left to
right. Each cell is filled in succession with only one component,
thus providing no component overlap functionality. The GridLay-
out manager doesn’t provide a way to address a specific cell in the
grid in which to add a component. In addition, component sizes are
normalized to fill the cell so that each cell maintains an equal size,
regardless of the preset component size.

Similarly, the GridBagLayout organizes components into cells
like the GridLayout, but provides greater flexibility in how they are
displayed within each cell area by associating a separate con-
straints object (GridBagConstraints) with each component.
Through the value manipulation of the GridBagConstraints object,
each component can occupy more than one cell at a time. This is
not a simple process, however, because it relies on a coordinate
system rather than a single-cell ID number. For example, to add a
component to a panel that implements a GridBagLayout manager,
the programmer sets the instance variables, gridx and gridy, of the
associated GridBagConstraints Object.

Alhough this manager provides a mechanism for a component
to span more than one cell, it doesn’t provide component overlap
or a simple solution for defining where in a cell area the component

should be located. Also, the GridBagLayout
resizes components based on a combina-
tion of its associated constraints object, the
minimum size of the component and the
preferred size of the container. Setting a
specific size for a button object can be
overridden by the size calculated by the
layout manager using the constraints
object.

Java 1.2 introduces a new layout manag-
er class called an OverlayLayout, which
lays out a component based on the compo-
nent’s specified alignment value. While this
class allows components to overlie each
other, the programmer must set each com-
ponent’s alignmentX and alignmentY values
so that the manager can calculate the com-
ponent’s size and location relative to the
size of the enclosing container.

For this example, creating a custom lay-
out manager solution centering around the
general functionality of these three layout
managers and incorporating the simplicity
of HTML tables seemed appropriate. So
how is this done? To begin designing a cus-
tom layout manager, it is first necessary to
understand how it works and when.

Layout Manager Functionality
Java container classes in themselves

provide no functionality supporting the
positioning of components. Sun has sepa-
rated this functionality into a set of layout
manager classes. In turn, a layout manager
controls only where components are dis-
played within the container, not what com-
ponents are displayed. In effect, the con-
tainer relies on the layout manager to place
the components while the layout manager
relies on the container to know what com-
ponents are to be placed.

In Java, an object becomes a layout man-
ager by implementing the methods
declared in the java.awt.LayoutManager or

java.awt.LayoutManager2 interfaces or
both. The latter interface is new to Java 1.1,
and extends the LayoutManager; no
changes were made to these interfaces in
Java 1.2. These interfaces describe 10
method signatures (behaviors) necessary
for the implementing object to arrange
components within a container. These
behaviors can be grouped into six types:
• Adding components
• Removing components
• Container layout
• Invalidation
• Size definition
• Location definition

The first three types are the minimum
behaviors needed to create a layout manag-
er’s functionality. In designing the add and
remove behaviors, the most important con-
sideration is that the layout manager needs
to maintain and associate layout informa-
tion on each component object maintained
by the container object.

The following describes each group,
what the associated methods do and when
they are called by a container object. I
assume the reader is familiar with how a
layout manager is used by a container
object, and knows that a Java applet or
application never calls any of these imple-
mented interface methods directly, but
leaves these calls to be implemented by the
container object itself.

Adding Components
When a component is added to a con-

tainer using one of the container’s add
methods, the container adds a new compo-
nent to the end of an array (n-1) of compo-
nents that it maintains. The container then
invalidates itself and calls one of the two
registered layout managers’ addLayout-
Compontent(); methods (see Figure 1).

These methods define how the layout
manager will track the components that are
added to the associated container:

public void addLayoutComponent(String posi-
tion, Component comp);
public void addLayoutComponent(Component
comp, Object constraints);

The layout manager should maintain the
information passed by the string or con-
straints object to use when the container
needs to be laid out (see “Container Lay-
out”). This could be done with an array,
vector or hash table.

The first method definition takes a
String object that acts as a positional modi-
fier indicating how or where the component
should be laid out. For example, when a
container object implements a BorderLay-
out object as its layout manager and a com-
ponent is added to the center region of the
container, the method Container.add(“Cen-
ter”, comp); uses the string “Center” as a
positional modifier.

The other method definition supports
constraint-based layout management,
which assumes that each component
added to the container is associated with
a separate constraint object that specifies
how the component will be laid out. An
example of this is seen in the GridBagLay-
out and the associated GridBagCon-
straints classes.

Removing Components
When the container’s remove(Compo-

nent comp); or removeAll(); method is
called, the registered layout manager’s
removeLayoutComponent(); method is
called. This method removes the corre-
sponding component reference and any
associated modifiers from the layout man-
ager’s stored references:

public void removeLayoutComponent(Component
comp);

The container also removes the compo-
nent object from the list of components it
maintains. After this method has been
called, the container calls the layout man-
ager’s invalidateLayout(); method (see
“Container Invalidation”).

Container Layout
When the container’s doLayout();

method is called, the registered layout man-
ager’s layoutContainer(); method is called.
This method executes the algorithm that
sets the x and y coordinates’ width and
height of each component contained in the
targeted container object:

public void layoutContainer(Container parent);

http://www.JavaDevelopersJournal.com

Figure 1: Adding components scenario diagram

Container LayoutManager

Add component
to array.

Add (component,
object);

Invalidate();

invalidateLayout(container);

addLayoutComponent(component, constraints);

10 Java DEVELOPER’S Journal • VOLUME: 3 ISSUE: 10 1998

11VOLUME: 3 ISSUE: 10 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

EnterpriseSoft
Report Writer for Java

http://www.enterprisesoft.com

http://www.JavaDevelopersJournal.com

The algorithm designed to determine
these values varies depending on what is
required by the design of the layout manag-
er. However, regardless of how the algo-
rithm is designed, the following processes
should happen:
1. Retrieve a list of components maintained

by the container using the Container.get-
Components(); method.

2. Test if the component is visible.
3. Associate each visible component with

its constraints, maintained by the layout
manager.

4. Generate the correct x,y width and height
values for the component.

5. Pass these values to the component’s set-
Bounds(); method. Note that the contain-
er size may have changed since the last
time it was laid out.

After the container calls the layout man-
ager’s layoutContainer(); method, the con-
tainer draws the components on the
screen. The container does this by cycling
through the container’s array of compo-
nents beginning at 0 and ending at n-1.
When trying to facilitate overlapping, it is
important to add the component to the
beginning of the array, that is, index loca-
tion 0. This can be accomplished by calling
one of the container’s add methods that
includes an integer index value as one of its
arguments, such as add(Component comp,
Object obj, int index);. By specifying a dif-
ferent index value, the component can be
inserted between two overlapping compo-
nents.

Container Invalidation
Container invalidation occurs when the

container’s setLayout();, add();, remove();
or removeAll(); method is called. The con-
tainer is marked as invalid and the regis-
tered layout manager’s invalidateLayout();

method is then called. This method can
define what actions to take, if any, when a
container is marked invalid:

public void invalidateLayout(Container tar-
get);

Defining Size
When the container’s getPreferred-

Size();, getMinimumSize(); or getMaximum-
Size(); is called, and if the container doesn’t
already have size information stored, the
registered layout manager’s preferredLay-
outSize();, minimumLayoutSize(); or maxi-
mumLayoutSize(); method is called.

These methods can optionally define
what the container’s size should be after
laying out all the objects and taking into
consideration the container’s insets:

public Dimension minimumLayoutSize(Container
parent);
public Dimension preferredLayoutSize(Con-
tainer parent);
public Dimension maximumLayoutSize(Container
parent);

There’s no guarantee that any one of
these methods will be called before the lay-
outContainer(); method (see “Container
Layout”).

Defining Location
When the container’s getAlignmentX();

or getAlignmentY(); is called, the registered
layout manager’s getLayoutAlignmentX();
or getLayoutAlignmentY(); is called. These
methods can optionally define a percentage
value representing the distance that a com-
ponent should be from the edge of a con-
tainer:

public float getLayoutAlignmentX(Container
target);

public float getLayoutAlignmentY(Container
target);

At minimum, a default return value of
0.5f for centered should be supplied.

Designing the RelationalGridLayout
Manager

The resulting class from the example’s
design is the RelationalGridLayout. The
RelationalGridLayout class, like the Grid-
BagLayout, uses an associated constraints
object (see CellConstraints.java Code) for
each component added to the container. In
addition, a LocationManager class was cre-
ated to define nine locations within a cell
area (see LocationManager.java Code) as
public final static int types.

Unlike the GridBagConstraints class that
gives direct exposure to its instance vari-
ables, the CellConstraints class contains
four constructors that initialize a set com-
bination of instance variables. This design
allows for only four possible ways to define
how the component should be laid out.

Each constructor takes an integer that
indicates the cell number that contains
the upper-left corner of the component.
Three of the constructors take two inte-
gers, each representing the number of
cells the component will span horizontal-
ly and vertically. These two values are
used to represent the cell area in which
the component will be placed. One of the
constructors takes a java.awt.Point
object that indicates the x and y coordi-
nates of the component’s upper-left cor-
ner within the cell area, and one of the
constructors takes an integer that repre-
sents a predefined location within the cell
area using one of several LocationManag-
er values.

The following paragraphs discuss key
points in the RelationalGridManager’s
implementation (see code listing).

The Constructor
To understand how the grid is repre-

sented, the constructor needs information
about the targeted container’s size, the
number of columns and the number of
rows. This information is used to initialize
the instance variables, calculate the cell
size and create a hash table used to hold
the component layout information. Note
that component layout information is
stored in a private class object called Item-
Info (lines 7–19).

The Layout Manager's Behaviors
This design requires the implementation

of only three of the 10 behaviors (the
remaining are implemented either with
empty bodies or with default return values;
lines 43–50), which include:

Figure 2: TestCustomLayout Add Component Screen grid

Shape

Component’s Name

Size Color Cell No.

ADD

Select the new component’s characteristics

• VOLUME: 3 ISSUE: 10 1998Java DEVELOPER’S Journal12

13VOLUME: 3 ISSUE: 10 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

KL Group
Java Beans

http://www.klg.com

Adding Components
The RelationalGridLayout implements

the LayoutManager2 interface to support
constraint-based modifiers. As such, it only
implements the addLayoutComponent
method that takes a reference to the com-
ponent added by the container and Object
(line 81). After testing for validity, the
Object is cast to a CellConstraints type and
assigned to a method variable (lines 87–89).
In line 91 the size of the component is
retrieved next and also saved in a method
variable.

After the method variables have been
assigned, the point values for the compo-
nent’s location are calculated (lines
94–111). If a point within the cell area is
specified, the calcCellInset(); method is
called (lines 185–192). This method takes
the point, the cell area size, and the com-
ponent’s size to calculate the distances
of the component’s edges from the cell’s
edges. If, instead, a LocationManager
value is specified, the calcInsets();
method is called (lines 203–278) to deter-
mine these same values based on the
LocationManager value supplied. Once
the component’s insets are calculated for
the cell area defined by the column and
row values, the x,y coordinate or point
value within the container’s dimensions
is calculated using the cell ID number
and the component’s insets (lines 98, 100
and 108).

Next, in lines 115–118, the method takes
the calculated point and the component’s
size and converts this information into pro-
portional ratios. These ratios are stored in
an ItemInfo object and added to the
instance’s hash table keyed on a reference
to the component (line 121).

Removing Components
No special processing is needed here

other than to remove the component’s dis-
play information from the hash table (lines
124–129).

Laying Out Components
The code to lay out the components in

the container begins at line 131 by first
determining if the container has changed in
size since the last time the container was
laid out. Line 136 compares the saved con-
tainer’s size (PanelSize) with the current
size of the container retrieved in line 135. If
the size has changed, the new size is saved
and a new cell size is calculated.

Next, in line 142, a reference to the con-
tainer’s array of components is retrieved.
Then the method loops through the array
retrieving the component’s modifier infor-
mation from its associated ItemInfo object,
converts it from ratios to actual pixels
based on the current size of the container

and then sends the x,y width and height
information to the component using its set-
Bounds(); method (lines 143–153).

The rest of the RelationalGridLayout
implementation contains helper methods
that assist in performing some of the calcu-
lations needed by the behaviors described.
Two useful methods to note are:
1. Calculating Cell Area Insets. The calcIn-
sets(); (lines 221–296) method uses the sup-
plied rowspan and colspan values to deter-
mine the size of the cell area in which the
component will be located. Then, using the
supplied LocationManager index value, the
appropriate algorithm is selected to calcu-
late and return the component’s inset value
for the cell area.
2. Calculating Cell Area. The calcArea();
method (lines 54–59) is a public method
used both internally and externally to
assist in determining cell area size. By using
this method as a public instance method,
the size of the component can be preset rel-
ative to the size of the cell area in which it
will be located.

Using the RelationalGridLayout
The TestCustomLayout applet demon-

strates how the RelationalGridLayout is
used. It also provides a way to interactively
try out RelationalGridLayout functions like
overlaying components, adding compo-
nents to a specific place on the grid and
maintaining the component’s location when
the container size changes. The TestCus-
tomLayout applet’s Add Component Screen
is one example of how to use the Relation-
alGridLayout.

First, a sketch of the screen was created
(see Figure 2). Then a grid pattern was
derived by identifying the smallest element
in the sketch; in this case the shape, size,
color, cell number labels and their associat-
ed input fields were used to identify the size
of the smallest cell. From this, an 8 x 8 grid
pattern was created.

The createPanel(); method in the Add-
CompPanel class provides the source defin-
ing the representation of the Add Compo-
nent Screen (see AddCompPanel.cre-
atePanel Code). Much of the code is taken
up by creating the individual components
and specifying their characteristics. Line 6
creates the RelationalGridLayout object
supplying the size of the panel and the
number of columns and rows in the grid
pattern. Notice that a method variable is
created to hold the reference to the layout
manager, as opposed to creating the refer-
ence directly in the setLayout(); method
call in line 7. This was done so that we can
use the layout manager’s calcArea();
method to specify and preset component
sizes.

Lines 10–104 create the instances of

each component and set their character-
istic values. Each component’s size is set
directly because the layout manager does-
n’t calculate the size, but calculates the
component’s proportional size (propor-
tional to the container). Lines 17, 25, 28
and 96 use the layout manager’s cal-
cArea(); method to set these sizes relative
to the sizes of their intended cell areas.
For the shape, size, color and cell number
labels; their fields; and the add button, a
method variable (line 28) is assigned with
the size calculated by the layout manag-
er’s calcArea(); method as two cells wide,
one cell high, with a 10-pixel inset, just as
the sketch shows.

Once created, the components are
added to the container using the panel’s
add(Component comp, Object obj, int
indx); method (lines 105–126). With each
add a CellConstraints object is created,
passing the cell number, the number of
columns the component will span horizon-
tally, the number of rows the component
will span vertically and a location within
the cell area. Some components have a
value of 1 for either the column or row
spans. The RelationalGridLayout does not
assign a valid default value for these argu-
ments. Also, the index value passed to the
add method is 0, thus placing each compo-
nent at the beginning of the container’s
component array.

Conclusion
Creating a custom layout manager in

Java is a simple process that consists of
implementing the appropriate layout man-
ager interface that supports the container
add methods that will be used, deciding
which behaviors the layout manager will
support and designing the algorithms that
will calculate and track each component’s
location within the container. When one of
the Java AWT default layout managers does
not solve all the layout requirements, creat-
ing a custom layout manager may be the
solution.

About the Author
Joseph Cozad is the Java technologist for Motorola’s
Advanced Media Platforms in Austin, Texas. As a
Sun Microsystems certified Java developer, he
serves as Motorola’s corporate knowledge
champion on Java technology. Prior to being a
Java technologist, he established and coordinated
online interactive systems. You can contact him
at rzxd50@email.sps.mot.com.

14 • VOLUME: 3 ISSUE: 10 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

rzxd50@email.sps.mot.com

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

15VOLUME: 3 ISSUE: 10 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Sun Test
Java Testing Solutions

http://www.suntest.com

16 • VOLUME: 3 ISSUE: 10 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

by Andrei Cioroianu

We all know what AWT is. We know that AWT 1.0 is simple and
easy to use. It’s compatible with the old versions of the Web
browsers, but has an inefficient event-handling model. The events
are received by the components, which handle or ignore them.
Worse, if you want to add a small functionality to a component, you
have to create a new class of components. AWT 1.1 corrects these
defects. It’s a little more complex, but has many advantages. The
new delegation-based event model plays a key role in the JavaBeans
architecture as it facilitates the communications between beans.
Design patterns allow the development tools to use reflection to
become smarter. With AWT 1.1 you can create lightweight compo-
nents (like those of Swing) that are serializable so you can create
persistent user interfaces. The delegation-based event model allows
programmers to isolate the application logic from the user interface
and improve UI performances of the applications.

AWT 1.1 has to struggle to offer compatibility with AWT 1.0. A
component may use the old event model or the new one, but not
both at the same time. The documents from Sun advise you not to
mix event models in the same application. How can you believe that
advice if all AWT 1.1 components are born as AWT 1.0s? (I’m talking
about instances, not classes.) The event model of AWT 1.0 is the
default event model of the AWT 1.1 components. Each component
has a flag – newEventsOnly – that indicates the type of event model
used by the respective component. The flag is initialized false when
the component is created. When you register listeners to a compo-
nent, the newEventsOnly flag is switched to true. Only after that
occurs will the component use the AWT 1.1 event model. The trans-
formation is irreversible (see Figure 1).

If you’re using Java 1.1 or a later version, your components have
the potential to become AWT 1.1 components. Most of them die as

Force components to
use 1.1 and discover

those that use 1.0

JDJ FEATURE

WhatWhat

DoYou Use?DoYou Use?

17VOLUME: 3 ISSUE: 10 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

AWT 1.0 components, however, because the programmers don’t reg-
ister listeners to them. Why register a listener to a TextField when
you have a getText() method? Why register a listener to a Checkbox
when you have a getState() method?

If you’re using Java 1.1 or 1.2 and you don’t call deprecated meth-
ods of AWT 1.0, then you can benefit from all the advantages of AWT
1.1. If you’re not careful, however, many of your components will use
the AWT 1.0 event model. Your app will work fine but won’t run at
maximum speed. This article shows you how to force all the com-
ponents to use the AWT 1.1 event model.

How to Improve UI Performance
You should ask yourself first whether your apps need improved

UI performance. Most of the simple applets run at the same speed no
matter what event model they use. But suppose you’re working on a
complex application that places components in a slow container – to
create compound documents, for example. You’ll want all of the
events addressed to the components not to be passed to the con-
tainer.

Let’s consider a simple example. I wrote a small applet whose
area is covered by only one component (a java.awt.Canvas
instance). The init() method of the applet creates the Canvas object
and stores a reference to it in the c member variable.

public void init() {
setBackground(Color.red);
c = new Canvas();
setLayout(new BorderLayout());
add(c, "Center");

}

This applet is a slow container. Each time the mouse is moved
within the applet’s area, the status bar is modified a hundredfold.
This operation proved slow enough for most of my browsers (Hot-
Java 1.1, Navigator 4.05 and AppletViewer). SystemMonitor of Win95
showed that my processor, a Pentium MMX 166, was 100% busy. Still,
Internet Explorer 4.0 was very fast at the redraw of the status bar, so
I had to increase the limit of the i counter at 1,000. If you have a very
fast machine you may grow to this limit, but be careful because the
applet might freeze your browser.

public boolean mouseMove(Event evt, int x, int y) {
for (int i = 0; i < 100; i++)

showStatus(Integer.toString(x * y + i));
return true;

}

The applet’s entire area was covered by the Canvas object, and
the mouse events received by this component were sent further – to
the applet. This means that the Canvas instance uses the AWT 1.0
event model. However, if I click on the canvas, the status bar won’t
modify anymore (mouseMove() isn’t called anymore) because the
applet intercepts the mouse click and calls the addComponentLis-
tener() method of the Canvas instance from the mouseDown()
method. Although undocumented, this is the only way to force the
components to use the AWT 1.1 event model.

public boolean mouseDown(Event evt, int x, int y) {
c.addComponentListener(null);
return true;

}

No listeners are registered to the Canvas object because the para-
meter of the addComponentListener() method is null. However, this
method will set the internal newEventsOnly flag of the component to
true. From this moment the applet won’t receive any mouse events
because its entire area is covered with an AWT 1.1 component.

The Canvas object was born as an AWT 1.0 component and
became an AWT 1.1 component after the “c.addComponentListen-
er(null)” call. This is a good trick that allows you to force the AWT
components to use the delegation event model even if no listeners
are registered to them. There is no correct way to transform an AWT
1.1 component into an AWT 1.0 component. The applet not only uses
the AWT 1.0 event model for its entire existence, but it also overrides
deprecated methods.

Find Out What Event Model Your Components Use
The only way to determine what event model is used by a partic-

ular component is to examine the newEventsOnly flag, which isn’t
public. How can you do that in the absence of a getNewEventsOnly()
method? Fortunately, the flag is not private. It’s friendly, so you may
write your own AWT class whose methods can read newEventsOnly.
You can do this without altering your Java Virtual Machine (JVM), as
long as you write stand-alone applications. The trick doesn’t work
with Navigator and Internet Explorer without breaking their security
mechanisms, and I don’t know how to do that. After all, I’m just a
Java developer, not a professional hacker. You also must know that
Java 1.2 has a better security mechanism than 1.1. If you want to run
the DemoCompTree application with JDK 1.2 beta 4, you’ll have to

18 • VOLUME: 3 ISSUE: 10 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

use the -Xverify:none option of the Java
interpreter. Otherwise, an IllegalAccess
Error will be thrown (source code will be
explained later).

I named the new AWT class CompTree
(see Listing 1). You don’t need to place
CompTree.class in the classes.zip file. Just
insert the “package java.awt;” declaration at
the beginning of the source file and, after you
compile it, copy the classfile in
your_dir/java/awt. Then add your_dir direc-
tory at CLASSPATH and you’ll be able to use
the CompTree class like any other AWT class
(your_dir might be the current directory --
“.”). This is possible because the JVM is lock-
ing after system classes in all of the directo-
ries and .zip files from CLASSPATH. The JVM
makes no distinction between java/awt/Com-
ponent.class from classes.zip and
java/awt/CompTree.class from your_dir.
There’s nothing to stop you from splitting
the classes of a package into more than one
directory.

The CompTree class has only one public
method (printTree()) that takes a
java.awt.Container (c) as argument and
prints (to console) the entire component
hierarchy, whose top is referenced by c.
Note that this hierarchy has nothing to do
with the class hierarchy of the java.awt
package. The public printTree() method
calls the private printInfo() and printTree()
methods.

The printInfo() method (see Listing 1)
shows information about the component
whose reference is passed as parameter. It
prints the name of the class of the compo-
nent, the internal name of the component
(which is returned by the getName()
method) and the value of the newEventsOn-
ly flag. True means that the component uses
the AWT 1.1 event model. False indicates
that the component uses the old event
model (of AWT 1.0). If a component is a con-
tainer (java.awt.Container is a subclass of
java.awt.Component), then the name of the
LayoutManager class is printed. More infor-
mation about the state of the component
could have been obtained with the
toString() method.

The private printTree() method (see List-
ing 1) gets the list of the components of the c
container (c is a parameter variable) with the
help of getComponents(). The printInfo()
method is called for each component. The
printTree() method is called recursively for
those components that are also containers.
This way, the entire component tree is print-
ed. An integer parameter is used for indenting.

What Is the CompTree Class
Good For?

You already know the answer. You can
use it to identify the components of a con-
tainer that doesn’t use the AWT 1.1 event
model because they don’t have listeners,
and then force them to use it. You can do
that, for example, by calling the addCompo-
nentListener() method with a null parame-
ter, as I described earlier.

Next I’ll show you how to use the
CompTree class as a tool. In my “Persistent
User Interface for Multiuser Apps” article

(JDJ, Vol. 3, Issue 8), I presented an app,
SmartLogin, whose window was serialized
into a file. I’m not interested right now in per-
sistence. What I really want to find out is
what event model was used by the compo-
nents of the SmartLogin window (two Pan-
els, two Buttons, three Checkboxes, two
Labels and two TextFields). Therefore, I
wrote a small app that creates an instance of
the SmartLogin class (which inherits from
java.awt.Frame) and calls the printTree()
method of the CompTree class. The main()
method has only three lines.

SmartLogin sl = new SmartLogin("");
CompTree.printTree(sl);
System.exit(0);

To use CompTree in this app, I had to
include an import directive in the source file.

import java.awt.CompTree;

Listing 2 shows the results after the app
is run. Most of the components (nine of 12)
use the AWT 1.0 event model. Note that
SmartLogin application doesn’t use depre-

cated APIs. The delegation event model is
used only by the SmartLogin container and
the two buttons. This is typical. You usually
register listeners to the push buttons in
order to intercept the user’s actions. You
also register a listener to the app’s window
so that it can close. Most of the components
don’t need listeners, which helps the pro-
grammer control the number of the classes
of the application.

The SmartLogin app is fast enough
because it’s simple. If I force the nine com-
ponents that use the old event model to
work with the new one, the increase in
speed is imperceptible so the source code
should remain unchanged. For a real-world,
complex application, however, the tech-
niques presented in this article may be use-
ful.

Note that in last month’s article the con-
structor of the SmartLogin class was private.
This made sense because the app was creat-
ing only one SmartLogin instance in the
main() method (SmartLogin was a single-
ton). For this article I had to delete the pri-
vate keyword to be able to study the com-
ponent tree of the SmartLogin container
with the help of CompTree.

CompTree can also be used as a utility
class to verify or study the component hier-
archies that you coded manually or built
visually with a development tool. You don’t
necessarily need CompTree to do such an
operation. If you have JDK 1.1/1.2, you can
press Ctrl+Shift+F1 to dump the component
tree of a Frame to the console. However, you
still need CompTree to show the new-
EventsOnly flags.

When Wouldn’t You Use CompTree in
Your Apps?

The CompTree class can’t be down-
loaded with applets (it must be placed in
CLASSPATH), but that isn’t a major problem.
When I wrote the CompTree class, I saw it as
a tool to use at design time. You could
include it in your stand-alone apps to be
used at runtime, of course, but it’s not a
good idea because the CompTree class is
already included in the java.awt package.
What would happen if you deployed more
than one version of this class in different .jar
archives and another person wanted to use
them together? Another architectural
change to AWT (beyond JDK 1.2) might
cause the deletion of the newEventsOnly
flag. Until something is modified, use
CompTree as a tool to tune your apps, and
don’t forget the -Xverify:none option if you
use JDK 1.2.

Request for Enchantment
Let’s take a short look inside AWT and

Swing. The constructor of the java.awt.Com-
ponent class contains no instructions.

Figure 1: The life cycle of AWT components

new AWT 1.0
Component

AWT 1.1
Component

Garbage

addXyzListener()

19VOLUME: 3 ISSUE: 10 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

JTest
by Parasoft

http://www.parasoft.com/jtest

20 • VOLUME: 3 ISSUE: 10 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

protected Component() {
}

The constructor of the Swing’s JCompo-
nent class calls the enableEvents() method,
which is inherited from java.awt.Compo-
nent via java.awt.Container (JComponent
extends Container). The enableEvents()
method will set the newEventsOnly flag to
true. The conclusion is that all of the Swing
components use the delegation event model
since they’re created. They’re also light-
weight components; they don’t have native
peer classes.

public JComponent() {
super();
enableEvents(AWTEvent.FOCUS_EVENT_MASK);

}

Let’s go back to AWT. Wouldn’t it be nice
to have a static flag – defaultNewEventsOnly
– that could be used by the Component()
constructor?

// This class variable doesn’t exist
static boolean defaultNewEventsOnly = false;

// This constructor doesn’t exist
protected Component() {

newEventsOnly = defaultNewEventsOnly;
}

If you were sure you used only AWT 1.1 in
an application, then you could call, right
from the start, a method like this:

// This method doesn’t exist
public static newAWTOnly() {

defaultNewEventsOnly = true;
}

This way you wouldn’t need to call add-
ComponentListener(null) to force the
components to use the AWT 1.1 event
model.

Summary
For compatibility reasons the AWT 1.0

event model is the default event model of
the AWT 1.1 components. You usually have
to register listeners to components to con-
vince them to use the delegation event
model.

This article teaches you two things: how
to force the components that don’t need lis-
teners to use the AWT 1.1 event model, and
how to discover the components that use
the AWT 1.0 event model. You also learned a
hacking trick: how to access a friendly vari-

able of a java.xxx.Yyy class without altering
the JVM.

References
1. Sun Microsystems, “The AWT Home

Page,” http://java.sun.com/products/jdk/
awt/index.html.

2. Sun Microsystems, “Delegation Event
Model,’’ http://java.sun.com/products/jdk
/1.1/docs/guide/awt/designspec/events.html.

3. Sun Microsystems, “Deprecated Methods
in the 1.1 AWT,” http://java.sun.com/prod-
ucts/jdk/1.1/docs/guide/awt/Deprecated-
Methods.html.

4. Andrei Cioroianu, “Persistent User Inter-
face for Multiuser Applications”
http://www.javadevelopersjournal.com/.

5. Andrei Cioroianu, “Inside AWT,”
http://www.geocities.com/SiliconValley/H
orizon/6481/InsideAWT.html.

About the Author
Andrei Cioroianu is an independent Java developer.
He has a BS in mathematics-computer science and an
MS in artificial intelligence. His focus is on 3D graph-
ics (Java 3D), software components (JavaBeans) and
user interface (AWT, JFC). You can reach Andrei for
questions or comments at andcio@hotmail.com.

andcio@hotmail.com

// CompTree.java

package java.awt;

public class CompTree {

public static void printTree(Container c) {
// Prints the component tree, whose top is c
printInfo(c, 0);
printTree(c, 4);

}

private static void printTree(Container c, int l) {
// Gets the component list of the c container
Component a[] = c.getComponents();
if (a == null) return;
// Prints the information about each component
for (int i = 0; i < a.length; i++) {

printInfo(a[i], l);
if (a[i] instanceof Container)

printTree((Container) a[i], l+4);
}

}

private static void printInfo(Component c, int l) {
// This string computing is not optimized
String s = new String();
for (int i = 0; i < l; i++)

s += ' ';
// Prints the information about the c component
System.out.print(s);
System.out.print(c.getClass().getName());
System.out.print(" -- ");
System.out.print(c.getName());

if (c instanceof Container) {
LayoutManager m = ((Container) c).getLayout();
System.out.print(" (");
if (m != null)

System.out.print(m.getClass().getName());
System.out.print(")");

}
System.out.print(" -- ");
System.out.print(c.newEventsOnly);
System.out.println();
// Uncomment next line for more information
// System.out.println(s + "+ " + c);

}

}

SmartLogin -- frame0 (java.awt.GridLayout) -- true
java.awt.Label -- label0 -- false
java.awt.TextField -- textfield0 -- false
java.awt.Panel -- panel0 (java.awt.GridLayout) -- false

java.awt.Checkbox -- checkbox0 -- false
java.awt.Checkbox -- checkbox1 -- false
java.awt.Checkbox -- checkbox2 -- false

java.awt.Label -- label1 -- false
java.awt.TextField -- textfield1 -- false
java.awt.Panel -- panel1 (java.awt.FlowLayout -- false

java.awt.Button -- button0 -- true
java.awt.Button -- button1 -- true

✦ LISTING 2: The component hierarchy of SmartLogin.

✦ LISTING 1: The CompTree class.

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

21VOLUME: 3 ISSUE: 10 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

JHL Computer
Consultants

http://www.jhlcomp.com

22 • VOLUME: 3 ISSUE: 10 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

This month we put together a visual
component, designed to render a tree
structure in a scrollable window. JCompo-
nentTree can display a set of arbitrary
components in a tree hierarchy. It can ori-
ent the tree in any of the cardinal direc-
tions (north, south, east or west); display
the connections between nodes using
straight or angled lines; and align each of
the tree nodes to be left-, center- or right-
justified.

The JComponentTree stores its data in a
DefaultTreeModel compatible with JTree
and uses TreeNode objects that extend the
DefaultMutableTreeNode class.

Figure 1 shows an example JComponent
hierarchy, fairly typical of the kind of struc-
tures you might want to display using the
JComponentTree widget.

Using the JFC TreeModel
The JComponentTree widget is designed

to take advantage of concepts developed
by Sun Microsystems in the JFC JTree com-
ponent. We work with the DefaultTreeMod-
el, for example, so that migrating between
views is possible. An application could
implement a structure based on the
DefaultTreeModel and easily switch
between display components, per-
mitting the JTree or the JCompo-
nentTree – or both – components to
display the model.

The TreeModel provides methods
that manage (TreeModelListener) lis-
teners, get the root node and permit
access to, or statistics about, the
nodes at each level in the hierarchy.
However, the TreeModel interface
doesn’t provide methods that actual-
ly change values in the model, so we
use the DefaultTreeModel as the
basis for our own JComponentTree
model, accessing available nodes
through the TreeModel interface.

My first attempt to keep the com-
patibility between JTree and JCom-
ponentTree optimized led to a few
deep forays into the JTree source

code. Starting with a pure implementation
of the TreeNode interface wasn’t enough
since it doesn’t allow you to change any
values. For that you need the Mutable-
TreeNode, which provides a method for
setting a user object – in our case a Com-
ponent to be displayed. It doesn’t provide
a way to get the object back, however. This
is a bit of a mystery to me, and clearly a
shortcoming of the interface design. Our
attempt to make the tree model as generic
and compatible to JTree as possible leads
us finally to the DefaultMutableTreeNode
class.

Since we have to use the Default-
MutableTreeNode as the basis for our own
tree structure, we’ll add another layer, the
ComponentTreeNode, to provide type safe-
ty, thus ensuring that the user object is
always a component. By extending Default-
MutableTreeNode, we can also make sure
that a JTree control could display the same
basic structure with minimal effort.

Listing 1 shows the source code for the
ComponentTreeNode class. We extend
DefaultMutableTreeNode and pass the
component to be stored as the user object

in the constructor, saving it by calling the
superclass constructor. The getComponent
method casts the user object into a Com-
ponent when we ask for it.

The ComponentTreeLayout
Manager

To keep the coupling to a minimum, we
use a layout manager. Unfortunately, this
implementation is slightly more coupled
than you might normally expect since we
need to draw the lines connecting nodes by
explicitly using the paintComponent
method in the parent container.

The ComponentTreeLayout class per-
forms a lot of work. Here’s a quick list of its
major responsibilities.
• Set/get values for alignment, linetype,

tree direction, etc.
• Calculate minimumLayoutSize and pre-

ferredLayoutSize.
• Calculate component positions and lay

out the tree.
• Draw the lines that connect each of the

components.

The more notable member variables are
alignment, linetype and direction. The
alignment value determines whether child
nodes are aligned to the LEFT, CENTER or
RIGHT of the parent. The linetype value
determines whether lines are drawn direct-

ly between nodes in a STRAIGHT line
or as SQUARE lines, forming right
angles to the nodes. The direction
value determines whether the tree is
drawn with its leaves to the NORTH,
SOUTH, EAST or WEST.

Each of these values has an asso-
ciated set and get method that fol-
lows the JavaBean standard (setVal-
ue/getValue, where Value is the actu-
al name of the variable), and con-
stant values are declared in the Com-
ponentTreeConstants interface,
which you can see in Listing 2. In
addition to these, we have access to
the TreeModel model value, which is
exposed through the getModel and
setModel methods, and the root
node, through the setRoot and get-
Root methods. Several constructor
variants are available. Each requires
a TreeModelListener so that we canFigure 1: JFC

JComponentTree
How to render a tree structure in a scrollable

window with a visual component
by Claude Duguay

23VOLUME: 3 ISSUE: 10 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

DATA
Representations

http://www.datarepresentations.com

24 • VOLUME: 3 ISSUE: 10 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

notify the parent container of any changes
to the model.

Size Calculations
The ComponentTreeLayout subclasses

the AbstractLayout class, which you might
remember from an earlier article I wrote,
“Practical Layout Managers” (JDJ, Vol. 3,
Issue 8). It provides default behavior for
most layout manager calls and a good foun-
dation to start from when you’re working
with them. As with any layout manager, the
ComponentTreeLayout must calculate the
minimum and preferred size for the con-
tainer in which it’s used.

Listing 3 shows code for the preferred-
LayoutSize method. We take the inset val-
ues into account and consider the horizon-
tal gap between each node. Figure 2 shows
how we can determine the width of a given
node and its immediate children. We simply
add the child node widths and the hgap val-
ues together, and test to make sure the par-
ent node is not wider. If it is, we always take
the wider value.

The main preferredLayoutSize method
calls getPreferredSize with the root node,
retrieved directly from the model, and get-
PreferredSize calls itself for each of the
child nodes it finds along the way. This
accumulates the height and width until
we’ve traversed the entire tree and then
returns the correct value at each level. The
minimumLayoutSize calculation is almost
identical, though we ask each node for its
minimumSize instead.

Positioning Components
When the container calls doLayout, the

layout manager calls the layoutContainer
method. This method determines which
orientation we’re dealing with and provides
a starting x and y value along with the root
node to the layout method, which recur-
sively repositions and resizes each compo-
nent using the setBounds method.

The layout method needs to determine
the size of each node and its immediate

children, but it can’t call the getPreferred-
Size method without running into propor-
tion problems. Instead, we have a near
duplicate of getPreferredSize called getLay-
outSize. Listing 4 shows the layoutContain-
er and layout methods, but leaves out get-
LayoutSize because it’s almost identical to
getPreferredSize in Listing 3.

The layout method takes into account
the orientation and node alignment before
deciding where each node should be
placed. We walk through the child nodes,
calculate the x and y positions and recur-
sively call the layout method to traverse
the tree structure.

To paint the lines between components,
we have to call the drawLines method
explicitly. Listing 5 shows the drawLines
method, which recursively draws lines by
calling getBounds on each component to
determine where they’re positioned. Paint-
ing always happens after the layout call, so
this is perfectly safe.

The JComponentTree Component
The JComponentTree code, shown in

Listing 6, provides an interface to a number
of ComponentTreeLayout methods, allow-
ing the model, orientation, linetype and
alignment to be set and retrieved. Whenev-
er one of these attributes is reset, the
doLayout method is called, along with
repaint, to refresh the JComponentTree
view. Listing 6 shows only one of the avail-
able constructor variations, and skips some
of the accessor methods and most of the
methods required by the TreeModelListen-
er interface. Each of the constructors calls
the ComponentTreeLayout equivalent. The
one in Listing 6 is the most extensive.

The JComponentTree control also imple-
ments the TreeModelListener interface to
monitor changes in the tree structure. If one
of these events is fired, the layout is recal-
culated and redrawn. When field values are
changed, we also fire the layout method and
repaint the tree. The exception is setDirec-
tion, which also calls setSize to make sure

the scrollable panel size is correct.
The addNode method creates a Compo-

nentTreeNode object and adds the compo-
nent to the container. To make it possible to
create children that refer to an added node,
we return the ComponentTreeNode object
and handle null parents as a request to set
the root node. You’ll want to pay attention
to this since accidental null parent nodes
won’t throw an exception and you’ll end up
with unexpected results.

When you download the code from our
Web site, you’ll find a test class called JCom-
ponentTreeTest. This class generates a ran-
dom tree with variations in depth, maxi-
mum width and randomly selected compo-
nents. In addition, it provides a set of but-
tons that lets you dynamically change the
direction, linetype and node alignment so
you can get a feel for what can be done.

Summary
You now have yet another control to add

to your programming toolbox. JCompo-
nentTree offers an occasional alternative to
JTree and provides some overlapping func-
tionality, but it’s typically used in situations
that require displaying a tree structure in
different ways. This widget lets you orga-
nize arbitrary components rather than
using a renderer to display data, so it has a
different overall purpose. Still, there’s just
enough commonality with JTree to allow
for easy migration.

About the Author
Claude Duguay has been programming since
1980. In 1988 he founded LogiCraft Corporation,
and he currently leads the development team
at Atrieva Corp. You can contact him at
claude@atrieva.com.

width

node gap node nodegap

Figure 2: Recursive width calculation Figure 3: An application component hierarchy

claude@atrieva.com

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

25VOLUME: 3 ISSUE: 10 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

DISTINCT
SOFTWARE

http://www.distinct.com

26 • VOLUME: 3 ISSUE: 10Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

ADVERTISER INDEXADVERTISER INDEX
Borland 19
www.borland.com 408 431-1000

Bristol Technology 75
www.bristol.com 203 438-6969

Coriolis 77
www.coriolis.com 800 410-0192

Greenbrier & Russel 25
www.gr.com/java 800 453-0347

Halcyon 35
www.halcyonsoft.com 888 333-8820

IBM 58&59
www.ibm.com 800 426-5900

IEC-EXPO 73
www.iec-expo.com 888 222-8734

ILOG 17
www.ilog.com 415 688-0200

Installshield 13
www.installshield.com 800 374-4353

Inno Val 38
www.innoval.com 914 835-3838

Keo Group 22&37
www.keo.com 978 463-5900

Advertiser Page
KL Group Inc. B/C
www.klg.com 800 663-4723

Live Software 41
info@livesoftware.com 619 643-1919

Net Dynamics 79
www.netdynamics.com 650 462-7600

ObjectShare 43
www.objectshare.com 800 973-4777

Object Matter 50
www.objectmatter.com 305 718-9101

ObjectSpace 4
www.objectspace.com 972 726-4100

Object Management Group 53
www.omg.org 508 820-4300

Progress/Cohn & Godly 21
www.apptivity.com 800 477-6473

ProtoView 3
www.protoview.com 609 655-5000

Roguewave 15
www.roguewave.com 800-487-3217

Sales Vision 47
www.salesvision.com 704 567-9111

Silverstream 83
www.silverstream.com 888 823-9700

Sockem Software 65
www.sockem.com 814 696-3715

Stingray Software Inc. 2
www.stingsoft.com 800 924-4223

SunTest 11
www.suntest.com 415 336-2005

Sybex Books 63
www.sybex.com 510 523-8233

The Object People 23
www.objectpeople.com 919 852-2200

SYS-CON Publications 71
www.sys-con.com 800 513-7111

Thought, Inc. 48
www.thought.com 415 836-9199

Visionary Solutions, Inc. 50
www.visolu.com 215 342-7185

WebMethod 33
www.wbmethods.com 888 831-0808

Zero G. Software 6
www.zerog.com 415 512-7771

Advertiser Page Advertiser Page

27VOLUME: 3 ISSUE: 10 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

’Morning…or is it afternoon? It could even
be evening. Whatever it is, welcome. Another
month has rolled in and we’re now sailing dan-
gerously close to that Christmas mark again.
Goodness, where has the year gone? I’ve no
idea. This is my wee corner of the journalistic
minefield of the computing industry. Here I
don’t teach about Java. I don’t take you
through the joys of class design or the hell of
class threading. Instead I ask you to sit back,
push away the keyboard, tether the mouse
and prepare yourself for some gentle mental
stimulation as I give you some food for thought
about the overall picture, the greater goal.

This month let’s plump for greed, one of
the seven deadly sins. When talking about
money, it’s really the only one that can apply.
I want to take a look at the financial issues fac-
ing a small company in the Java world.

As most of you know, I run N-ARY Ltd., a
British-based Java consulting company I gave
birth to more than three years ago with noth-
ing. I donated my old 486 and that was the
only thing of note on the balance sheet. Three
years later we have a team of 12-plus people
and projects all over the world. And what do
we owe our investors? Nothing. We don’t
have investors.

This is the first point I’d like to bounce
around. When starting out on this long road
to success, there seems to be the British way
of doing things and the American way of
doing things. It appears that when a group of
skilled individuals get together to start some-
thing, what happens next depends largely on
the side of the Atlantic you wake up on.

In America the first thing on the agenda, or
at least one of the top things, is to find an
investor. Whether in the guise of a friend, bank
or, more than likely, venture capitalist doesn’t
matter. It seems my American cousins prefer
working with a large sum and working down,
hoping they start making money before it
reaches zero. Us Brits on the other hand start
with zero and work up, hoping we don’t
expand beyond the month’s cash flow. From
day one the American company is worth, say,
$1 million, whereas the British company is
worth practically nothing. After three years
the tale can be somewhat different.

Granted this is a gross generalization, but
it serves to illustrate my point. The question I
put to you is, Which way is the right way?
Talking to you who are CEOs, if someone
approached you with advice on starting their
own company, would you recommend the
route you took? Perhaps another route? And
if a different approach, why not the one you
started off on? Answers on a postcard, please!

As one of the CEOs of a Union Jack com-
pany as opposed to a Stars and Stripes com-
pany, I’d have to say that our way may have
worked 20 years ago or for companies that
have no ambitions for growing multimillions.
But in this day and age hard work alone is not
enough. To successfully compete in today’s
high-paced industry I think we have to look at
the American way of doing things. If compa-
nies are to succeed, there’s not enough time
in the day, alas, to grow the company organi-
cally. Ironically, the root of the problem may
be the multimillion dollar companies, the
very thing we CEOs strive to take our compa-
nies to. But why?

Many of the large companies have
become so large that they can afford to lose
money on projects in order to stifle compe-
tition. If a small company pops up with an
innovative and exciting product and begins
marketing it, chances are the marketing
strategy employed will be very targeted
and low-cost. Now if one of the bigger com-
panies happens to see the idea, one of three
things will happen: the first is for them to
ignore it. The second is for the large com-
pany to buy out the smaller company. This
is probably the best-case scenario, and I’ll
come back to it later. The third – and most
damaging – response is for the large com-
pany to produce their own version of the
product and market off the back of one of
their more successful products.

For the smaller company this generally
means a death sentence. Remember back in
the old days of the World Wide Web, where
one of the benefits that was touted around
was the ability to give everyone a level play-
ing field? Give the smaller company the abili-
ty to compete with the corporates. All you
had to do was produce a Web site and you

could start the duel. However, anyone who’s
tried this knows that it’s not so much a duel
as a complete mismatch. Sure, the Web site
may be far superior, but what’s the use of a
Web site that no one visits? This is where the
corporate entity can win…in its ability to
attract users.

The corporation has the money to market
the Web site elsewhere, the money to adver-
tise the site both online and in more tradi-
tional media such as magazines and on bill-
boards. The smaller company does not.
Chances are the smaller company may have a
far superior product, but what’s the use of
that if no one knows about it? It’s a catch-22.

On my travels I heard of a small company
based in Brisbane, Australia. Now these guys
are typical of what I’ve just described. They
have an exciting product that’s doing famous-
ly well in the local market but they’re scared
to take it to America for fear someone might
steal it. Granted, their very presence on the
Web opens up their treasure chest for possi-
ble perusal by some Californian. The assump-
tion is that they’re unknown in the global
arena and want to stay that way…for the time
being at least. So this column is really going to
help them, eh? Oops.…

The point is that in any other industry they
have a strong chance of survival. They could
grow the company slowly and surely. In our
industry, however, the plot isn’t as straightfor-
ward. All it takes is for Microsoft or Sun or
another big company to take the idea and bun-
dle it free with their next release. What chance
does the small company have at this point?
They now have to justify to their potential
clients why they have to pay for the product
when it’s free elsewhere. A tough sale to make.

Before the Internet, an idea had the time
to evolve and grow. Only a handful of people
would know about it, and this would be
through word of mouth. A good idea comes
along now, and before you know it 16 other
companies around the world are suddenly
engulfed in the same project. A scary
prospect at the best of times.

I think the best example of that has to be
Web-based e-mail. When Microsoft bought out
Hotmail earlier this year, did anyone notice
the sudden flood of Web-based e-mail sites
coming online? Even Yahoo! offers some sort
of Web-based e-mail system and these guys
are supposedly a search engine. There are a

Beautiful Things Come in Small Bundles

STRAIGHT TALKING

Against greed: An argument for more
startup companies in the computer industry
and more alliances for effective marketing

by Alan Williamson

28 • VOLUME: 3 ISSUE: 10 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

number of smaller Web-based systems around
that are far more feature-rich than the “big
boys” but have no chance of survival on a
commercial level against the wrath of freebies.

I’m sure you can think of many examples
of where this has happened. Another, more
famous one is the handheld computer from
the GO Corporation. Their CEO, Jerry Kaplan,
tells a very entertaining – and in parts scary –
story in the book Startup. I’d recommend it for
any budding CEO, ignoring the last part; it’s a
very inspirational book. In this situation, how-
ever, Kaplan had venture funds but they
proved ineffective against the might of Apple
and Microsoft. The moral? Just because your
project may be heavily funded doesn’t mean
it’s guaranteed to succeed.

A company structured from a venture
fund generally has an exit plan, which is usu-
ally to be bought out in three to four years.
That’s the American dream, to be bought out
and walk away with a million or more dollars
in the back pocket. But let’s take a quick look
at the overall picture. Someone once com-
mented to me that they had read in a journal
that in around 10 years there’d be only a
handful of computer companies. All the small-
er companies would have been absorbed into
the bigger corporates.

Now on the face of it the comment seems
rather silly. Think of the thousands of compa-
nies all around the world, all developing vari-

ous tools and services. So let’s see if this
could be possible. We already know that the
exit plan for many startups is to be bought
out by a bigger company. Admirable. If this
continues, however, with bigger companies
buying up the smaller ones, the above state-
ment suddenly starts to ring some truth bells.
Maybe there’s something in it after all. But
there has to be a cutoff at some point, and
maybe this is where the statement falls apart.
Looking at the current trend now, it’s possi-
ble to see a future with tougher competition
and fewer companies.

So should we forget about running our
own companies? I don’t think so. Converse-
ly, I think that in order to crack the monop-
oly the larger corporates hold, more small
organic companies should be started, and
alliances should be formed to effectively
compete in the marketplace. The beautiful
thing about the Internet is that it brings
together this rich tapestry of talent and
diversity and allows it to be explored and
realized. We need more variety, not a handful
of companies controlling everything. Do we
want the computing industry to go down the
same route as the publishing industry?
Where two or three individuals control and
own the whole industry worldwide? Names
like Ted Turner and Robert Mudoch are
familiar to everyone. We’re heading down
there already, but it’s not too late.

Java has been responsible for a new
influx of startup companies. We are one of
these companies. Java has given us the abil-
ity to compete with companies irrespective
of platform. In many respects we’ve been
given the perfect tool to compete effectively
with the big companies. We don’t need to
make that agonizing decision about which
platform to support. We can let the big com-
panies play their own politics; by our not
directly supporting them, we’re slowly
weakening them. I love meeting other CEOs
and learning about their growth and their
excitement in using Java. It’s good to see
this wonderful array of companies explode
into the marketplace.

It all comes back to greed, the greed of the
bigger corporates who want to own every-
thing and control every corner. We’re in an
exciting time, and if everything does go pear-
shaped at the end of the day, well, at least
we’ll have good stories to tell our grandchil-
dren of how we tried to take on the
world…and, in a small way, won.

About the Author
Alan Williamson is CEO of N-ARY Limited, a UK-
based Java software company specializing solely in
JDBC and servlets. He can be reached by e-mail at
alan@n-ary.com or online at http://www.n-ary.com.

alan@n-ary.com

29VOLUME: 3 ISSUE: 10 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

INSTALLSHIELD
Java Edition

http://www.installshield.com/java

30 Java DEVELOPER’S Journal • VOLUME: 3 ISSUE: 10 1998 http://www.JavaDevelopersJournal.com

The Internet has come a
long way from Gopher
and WAIS sites for dis-
tributing information.

The World Wide Web has
opened up a whole new

avenue of products and a
more usable method of deploying informa-
tion. Multimedia has become a popular
way to display your ideas over the Inter-
net. There are a number of products on the
market to help you deploy multimedia files
through the Internet, but most require plu-
gins and if you can’t get them configured
properly you might be left on the side of
the road on the Information Superhighway.
Other Internet multimedia components
require your clients to install a browser
plug-in or special server-side software on
your Web server.

GEO Publishing has a pair of products
that raise the ante on streaming multime-
dia over the Internet. These products,
Emblaze Audio and Emblaze Video, offer
small Java applets to allow their respective
media to stream data over the Internet
without the need of a plug-in or server-side
software.

Gently Down the Stream-ing
In case you’ve heard these terms

before but never quite knew what they
meant, here’s the abridged version of
their definitions. The term streaming
refers to a transmission of information in
one direction, in which both the client
and the server cooperate for uninterrupt-
ed data. The client side will buffer a few
seconds of data before it starts sending it
to the screen and/or speakers. This com-
pensates for any momentary delays in
packet delivery. Therefore, streaming
audio refers to the uninterrupted one-way
transmission of sound bytes to the client,
whereas streaming video refers to the
uninterrupted one-way transmission of

video bytes to the client.

Hear and See the Difference
Emblaze Audio allows you to put

streaming audio on your Web site. It han-
dles all of the popular audio sound files –
AIFF and SND for Mac users, and WAV for
PC users. The Emblaze Audio compression
program, as shown in Figure 1, takes your
audio file and compresses it for optimal
transfer. The compressed file becomes an
.EA file and the program generates the nec-
essary HTML document to run the audio
file. All you have to do is put the custom
Web look and feel you want, and publish it
and the Emblaze Audio applet to your Web
site. When a person goes to your Web site,
as soon as the Java applet loads it starts

playing the audio track.
The compression ratio for Emblaze

Audio is quite impressive. It was able to
compress a 2.7 MB file down to a 201 Kb
file. Listening to the file over the Internet
with a 28.8 connection, I found the quality
to be excellent. The only thing that your
clients might not like is that there’s no way
to stop the audio once it starts unless they
move to a different HTML document.

PRODUCT REVIEW

Emblaze Audio/Video
by GEO Publishing, Inc.
You’ll be amazed by how easy it is to

add multimedia to your Web site

by David Jung

Figure 1: Audio compression program

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
Emblaze Audio/Video
GEO Publishing, Inc.
21110 Oxnard Street
Woodland Hills, CA 91367
Phone: 818 703-8436
Fax: 818 703-8654
Web: www.emblaze.com
E-mail: sales@geopub.com
Price: Emblaze Audio $99 (PC or Mac)
Emblaze VideoPro $295 (PC only)

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

31VOLUME: 3 ISSUE: 10 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

JDesignerPro
by BulletProof

http://www.bulletproof.com

32 • VOLUME: 3 ISSUE: 10 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Emblaze Video allows you to add
streaming video to your Web site. Video-
Pro isn’t a video editor; it’s designed to
prepare Microsoft Video (.AVI) files for the
Web. Just as with Emblaze Audio, you
process your files through a compression
application, illustrated in Figure 2. GEO
really took a look at their competition for
the type of streaming format to consider
for this product. There are 12 predefined
settings to choose from, ranging from “28.8
with smooth playback, small window with
audio” to “T1 smoothest playback, original
size image with audio.” If you don’t like
any of these settings, you can select the
Advanced option to mix and match your
own compression preferences. Unlike the
Emblaze Audio interface, you can bring
multiple files into a list and compress
them one by one, or find the settings you
like and compress them all at once. This
results in an .EV2 file, and an HTML page is
generated with the necessary Java applet
arguments. Just customize the HTML page,
and publish it and the Emblaze Video
applet to the Web. Just like Emblaze Audio,
once the Java applet is loaded into memo-

ry, not only will you be able to hear the dif-
ference you’ll also be able to see the dif-
ference.

This tool is more difficult to get used
to than Emblaze Audio, but that’s expect-
ed because it has to deal with a lot more
settings. The compression ratio for Video-
Pro is just as impressive as Emblaze
Audio. A 17 MB AVI file (320x240 pixels at
15 frames per second running 4.5 min-
utes) compressed down to 955 KB keep-
ing the same pixel size and frames per
second, optimized for a 28.8 modem con-
nection.

Batteries Not Included
Not to discourage you from trying this

out yourself, but you should be aware of
what you’ll need to make it work. Assuming
you want to put your multimedia on your
site, you’ll need software to create your
media files. Both Windows and the Macin-
tosh versions come with software that
allows you to record audio files, but they’re
limited as far as the quality and recording
time. There’s a large amount of shareware
and commercial audio recording software
out there, so you shouldn’t have any prob-
lems creating your sound bytes.

Video creation is another story. You can
scan the Net for your favorite AVI files, but
due to copyright reasons you aren’t allowed
to put them on your Web site without written
permission from the owner. In order to create
your own video clips, you’ll need to have a
video capturing system, like IOMega’s Buz or
Diamond Multimedia’s Supra Video Kit as

well as a video input source like a camcorder
or videotape player.

Conclusion
With both of these products, you’ll be

amazed by how easy it is to add multime-
dia to your Web site. You don’t need a
super-fast computer with MMX to take
advantage of either applet. You don’t have
to rely on any plug-ins, which will make
your target audience happy. And not hav-
ing to purchase any expensive server-side
software will make you, your Webmaster
and your wallet very happy. For organiza-
tions that have firewall issues, the limited
testing that I performed behind one gave
me no problems getting to the streaming
media, unlike some other streaming media
plugins I’ve used. The manuals for both
programs are spartan, but cover every-
thing necessary. There isn’t any online
help, not that you’re going to need it.

These are great products that work well
with both Netscape and IE (you might need
the service pack for IE 4.9 though). If
you’ve ever wanted to put streaming audio
and video on your Web site, these products
are definitely worth looking into.

About the Author
David Jung is a senior programmer analyst for a
national medical center in Southern California. He
is a key architect for all client/server development
for the organization. He can be reached at
davidj@vb2java.com.

Figure 2: Video compression program

davidj@vb2java.com
SYS-CON
PUBLICATIONS

Tune in for
detailed discussion of

products from JDJ advertisers!
Java readers voted #1 with their browsers!

2 million banners delivered each month
(more than all other Java media added together!)

SYS-CON
RADIO

33VOLUME: 3 ISSUE: 10 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Emule SDK
by SlangSoft

http://www.slangsoft.com

34 • VOLUME: 3 ISSUE: 10 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Vision JADE 4.0 is the
newest release of Vision
Software’s application
development environ-
ment for Java. While there

are a bevy of Java develop-
ment environments on the

market, Vision JADE offers a different
approach to developing Java applications.
The basic design of JADE builds upon a
model-driven approach to application devel-
opment that Vision Software pioneered long
before the world had heard of the Java lan-
guage. Vision Software is in the process of
releasing an updated version of JADE, ver-
sion 4.0, which features a number of
enhancements including an application serv-
er component.

Product Installation
Vision JADE 4.0 is scheduled to be

released into production by the early fall,
and I was given a version of the beta code,
complete with features to work with. Despite
the fact that this was an early release, the
installation CD-ROM came complete with a
standard Windows install program that sim-
plifies the process. There are four compo-
nents to install as figure 1 shows.

You’ll want to be sure and read the options
before you proceed with installation so you’ll
be prepared for any last minute changes. In
my case I needed to select the “install third
party products” choice in order to install the
required versions of Intersolv’s ODBC dri-
vers. Although you can install the complete
system on a stand-alone Windows NT
machine, I chose to install the development
environment on one machine and the Busi-
ness Logic Server alongside my Oracle data-
base on a second machine. In most cases
you’ll only need to install the Vision Develop-
ment Platform and Vision Business Applica-
tion Server (the proxy service is provided for

sites that will be accessing the BAS from
behind a firewall). The overall installation
went smoothly, despite the fact that it was a
pre-release of the software, and the entire
installation process took only an hour of my
time and about 100 megabytes of disk space.

Vision JADE Product Components
The Vision JADE suite of products is not

just another Java development environment.
Rather, it’s designed more for the business
application developer than the pure Java
technologist. The JADE product family is
composed of three key components: the
Vision JADE Business Studio, the Business
Logic Server and the JADE extensible data
access framework (XDA).

The JADE Business Studio is the hub of the
development environment and serves as the
starting point for building applications. At the
heart of the development environment is the
JADE repository, which stores your data mod-
els and all application components. While the
use of a central repository is a powerful con-
cept, the JADE repository can be stored only
in a Microsoft Access database in this release
of JADE. Vision has a strategy for supporting
the forthcoming repository standards being
discussed at the Microsoft and Oracle camps.
For the moment, JADE developers will have
to make use of a PC-based file system in
which to store the repository (since MS-
Access runs only on PC file systems).

After installing JADE and starting the Busi-
ness Logic Server, I launched the JADE Busi-
ness Studio to begin developing my first JADE
application. The starting point for any JADE
application is a business data/object model.
JADE does provide its own tool for designing
a data/object model, but it can reverse-engi-
neer an existing data/object model from any
of the databases that it supports. Vision JADE
has the ability to create tables on its own; I
would recommend using a more robust data-

modeling tool such as ERWin, PowerDesigner
or Oracle Designer to create your database if
it doesn’t already exist. I used the reverse-
engineering tool to load a data model from an
existing Oracle8 database into JADE. It was a
simple four-table database that models a stu-
dent records application. JADE was not only
able to quickly import this data model into
the JADE repository, but it was also able to
detect the primary keys and foreign key rela-
tionships between each of the tables. The
next step in the process would be to model
the various business rules in the JADE Busi-
ness Rules Editor. However, I chose to jump
ahead and generate a quick application based
on the default tables I had pulled from my
Oracle8 database. Within minutes I was creat-
ed a simple application that would allow
users to interact with the base tables of the
application.

The left-hand project browser can be used
to navigate through the various data entry
forms that I created in the application. The
right-hand panel offers a visual view of the
forms hierarchy and the basic transition
between form elements. JADE automates
many of the routine tasks that would be asso-
ciated with developing a data-centric Java
application. I was able to use the business
rules designer to modify the CLASSES table of
my application to serve as a drop-down
lookup list for the UGRADS table. Once I
began to generate data forms based on the
data model, JADE automatically made use of
the lookup list for all forms that referenced
the CLASS table. Overall, the development
environment is well organized and easy to
use, but you can’t “dock” many of the tool

PRODUCT REVIEW

Vision JADE 4.0 Business
Logic Server Studio
by Vision Software Tools, Inc.

A business rules development platform for creating and
deploying components across multitier environments

by Jim Milbery

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
Vision Software Tools
2101 Webster Street, 8th floor
Oakland, CA 94612
Phone: 800 984-7638
Fax: 510 238-4101
Web: www.vision-soft.com
E-mail: sales@geopub.com
Price: $3000/Developer Studio, Business Automa-
tion Server $6000/CPU NT,
$20,000/CPU UNIX

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

35VOLUME: 3 ISSUE: 10 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

JSales
by SlangSoft

http://www.slangsoft.com

36 • VOLUME: 3 ISSUE: 10 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

bars to the main IDE window, which can make
the desktop a bit cluttered.

Maximizing Your Productivity
The real power of JADE can be found in

two key areas: the business rules designer and
the archetype builder. The business rules
designer is used to add rules to the various
data objects you create. You can use this facil-
ity to create data integrity rules, processing
logic and action events for any of your base
data objects. When you generate (or deploy)
your application, JADE will generate the nec-
essary database definition language (DDL)
commands to implement your database and
integrity rules. In addition, JADE generates the
necessary Java code for implementing the
remainder of your business rules and event
code. JADE will automatically partition the
code to run on the Business Logic Server.
While this can save you considerable time,
JADE does not allow you to fine-tune the par-
titioning process. Forms can be built directly
on top of data model objects and relation-
ships, or they can be built on top of canned
SQL queries. Unfortunately, JADE does not
provide its own query-builder, and requires
developers to use the query-building facility
built into MS-Access.

Archetypes
While JADE generates a large amount of

the code for you, developers can affect this
process directly through JADE’s archetypes
builder. For those of you who are unfamiliar
with this term, the American Heritage Dictio-
nary defines archetype as “original model or
type after which other similar things are pat-

terned.” All of the key application generation
capabilities of JADE are based on a series of
archetypes. JADE’s archetype designer is used
to move a system archetype to an application
where it can be edited to reflect your compa-
ny’s standards for application design. Arche-
types are a powerful facility for implementing
standards throughout your organization, but
they should be approached carefully. While
application specialists will find JADE easy to
use, the process of physically editing and test-
ing archetypes is best left to the technical spe-
cialists.

The JADE installation comes complete
with over 20 demonstration applications that
can be used to give you a head start on build-
ing JADE applications. These samples cover
the gamut from building servlet applications
to adding JavaBeans to an application. There
is even a sample XDA application that will
help you connect JADE to a custom data
source. While these demo applications are
well designed, I would still recommend train-
ing before you embark on a major applica-
tion with JADE.

Deploying the Application
JADE allows you to test your application

directly from within the development envi-
ronment, either as an application or as an
applet within a browser. In addition, the
development environment allows you to call
out to other Java development tools (such as
Microsoft J++ or Symantec Visual Café), as
well as makes use of your favorite visual
HTML editing tool. I was able to integrate
Symantec’s Visual Page with JADE, which
allowed me to edit my HTML with a graphical

editor, a feature that JADE doesn’t provide.
This release of JADE offers a Java-based
application server for the middle tier (the
Business Logic Server). To make the process
of deploying and managing these applica-
tions easier, JADE comes equipped with a
Business Logic Console tool.

The Business Logic Console offers an
impressive suite of capabilities, including
the ability to manage database connec-
tions, users and security. While the devel-
opment tool itself can deploy the applica-
tion to the server for you, the Business
Logic Console is used to configure the
application once it has been deployed. The
left-hand pane of the Business Logic Con-
sole works like an outline control, while the
right-hand pane shifts as you select compo-
nents with your mouse. I was able to
restrict access to the data tables in my
application to certain users directly
through the Business Logic Console. In the
longer term, Vision intends to support
third-party application servers and provide
the ability to deploy business objects as
Enterprise Java Beans (EJBs). Vision has
already implemented failover capabilities
and load balancing, which will be enhanced
in future releases of the BLS. Vision has cer-
tified the BLS to run under Windows NT ini-
tially, and will certify the server on a num-
ber of key UNIX platforms.

Test Environment
Client: Dell Pentium II 200 MHz, 64 MB

RAM, 4 gigabyte disk drive, Windows NT 4.0
(Service Pack 3), ViewSonic 15-inch SVGA
monitor, 3COM Etherlink XL Adapter and 8X
CD-ROM.

Server: Dell Pentium II 266 MHz, 128 MB
RAM, 8 GB disk drive, Windows NT 4.0 (Ser-
vice Pack 3), Sony 15-inch Trinitron, 3COM
Etherlink XL Adapter and 32X CD-ROM.

Summary
Vision JADE 4.0 offers a high-productivity

environment for building Java-based busi-
ness applications, and I recommend that you
put this product on your shortlist of devel-
opment tools to evaluate. JADE is attractive
for organizations looking to leverage the
power of their application designers in the
Java world. You may wish to consider alter-
natives if you’re looking for a low-level Java
development environment.

About the Author
Jim Milbery is an independent software consultant
based in Easton, Pennsylvania. He has over 15
years of experience in application development
and relational databases. Jim can be reached at
jmilbery@milbery.com, or via his Web site at
www.milbery.com.

jmilbery@milbery.com

Figure 1

37VOLUME: 3 ISSUE: 10 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

ObjectPeople
TopLink

to store Java
Objects

http://www.objectpeople.com

38 • VOLUME: 3 ISSUE: 10 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

As developers are increasingly using
Java for advanced applications, they’ve
become dependent on the availability of
scalable technologies and tools to support
their development, including quality
assurance (QA), testing, maintenance,
release and customer support require-
ments. The technologies available today
have been inherited largely from those
available for languages such as C and C++,
including visual IDEs and a host of other
tools that offer a solution to a particular
problem. A few tools have been tailored
specifically for Java and enhance the
strengths of the language (like the incre-
mental IDE VisualAge and InstallShield’s
installer for Java that allows Java applica-
tions to be installed onto any Java-compli-
ant platform).

This article discusses specific issues
related to large-scale software develop-
ment in Java, suggests ways to address
them and concludes with an overview of
the Metamata (derived from meta-automa-
ta) toolsuite’s answer to some of these
problems.

While large-scale software development
in Java faces some of the same issues as
those of other languages, some are unique
to Java. Factors related to C and C++, such
as memory leaks, don’t exist in Java
because of garbage collection. On the other
hand, Java introduces different issues such
as thread analysis and memory debugging.

Standard IDEs don’t address most of the
problems that arise during large-scale soft-
ware development. In fact, they aren’t
designed to be a complete solution for
large-scale development. Hence their func-
tionality must be augmented with special-
ized tools.

Organization and Maintenance of
Software Components

This is one of the big tasks of large-scale
software development. The system must be
arranged into a set of small, manageable
components that interact with each other.
The interaction should take place through
well-defined, organized interfaces, simplify-

ing the task of managing and maintaining
the components.

Typically, time constraints and insuffi-
cient experience combine to introduce
defects in the way software systems are
architected, leading to decreased quality
and larger overheads in managing and
maintaining the system.

As an answer to this problem, a number
of studies have measured software systems
for complexity, which has led to a standard-
ized set of software quality metrics. While
there’s no substitute for experienced pro-
ject managers, the metrics do offer insight
into assessing software complexity and
quality.

It’s also important to be able to detect
inconsistencies in the program as it
changes. Typically, a program may be
changed in one place, but the effect of these
changes in other places is overlooked. For
example, by changing a type it’s possible to
make an existing type cast located in a dif-
ferent module no longer necessary, and
also overlook this type cast.

Time Constraints
A problem faced by large software sys-

tems development (in any language) is wait-
ing for the system to be rebuilt after every
small change. The time required to rebuild
after each change increases with the size of
the system, adding up to expensive over-
head costs. After a certain point, the neces-
sary, endless rebuilds significantly reduce
productivity.

Organizing a system into well-architect-
ed components and reusable libraries goes
a long way toward solving this problem. Yet
developer tools still need to be smart about
how much rebuilding they have to do for
each small change.

The best solution to this problem is
incremental development environments
such as VisualAge. They recompile only the
minimum amount necessary when a system
is changed. This concept of incrementality
can also be extended to other activities
beyond the standard development steps to
include QA, testing and so forth.

Large Scale Software
Development in Java:
Issues and Solutions

“…building tools
designed to

solve specific issues
related to software
development, rather

than to simply
retrofit C and

C++ technology…“

Unique Java
issues, solved with

specialized tools

About the Author
Dr. Sriram Sankar holds a bachelor of technology
degree in computer science from Indian Institute of
Technology as well as MS and Ph.D. degrees in com-
puter science from Stanford University. Currently the
president and CEO of Metamata, which he founded
in 1997, he can be reached for questions or com-
ments at sriram.sankar@metamata.com.

by Sriram Sankar

sriram.sankar@metamata.com

39VOLUME: 3 ISSUE: 10 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Memory Management
Large systems tend to use a lot of mem-

ory, and unless it’s managed carefully the
capacity of the underlying hardware can
quickly be exhausted. In systems written in
C and C++, the developer has complete
responsibility for making sure that unused
memory is recycled for future use rather
than retained indefinitely. Java addresses
this problem with automatic garbage col-
lection, i.e., the Java Virtual Machine peri-
odically searches for memory that is no
longer in use and recycles it for future use.

Unfortunately, garbage collection can
take a significant amount of time when sys-
tems use a lot of memory, severely con-
tributing to performance degradation. Most
Java programmers today assume that they
have to live with this in large Java pro-
grams.

The solution is to actively manage mem-
ory, and simply let the garbage collector kick
in for the smaller chunks of memory as well
as what slips through the cracks of the
explicit memory management routines.
Hopefully, better garbage collection algo-
rithms will become available shortly in Java
Virtual Machines and the problems related
to garbage collection will soon be a memory;
the next six months will reveal this possibil-
ity.

Another memory-related problem spe-
cific to Java is leaks due to the unrelin-
quishment of memory that’s no longer nec-
essary. In Java the garbage collector can
only recycle memory that isn’t being
retained by the user program. Memory
retained erroneously by the user program
will never be collected, even if it’s not used
anymore.

To solve these problems, debuggers and
profilers need to provide specialized fea-
tures for Java. Debuggers should provide
capabilities to determine whether a memory
leak is occurring, and profilers should pro-
vide insight into the details of memory allo-
cation.

Performance
Clearly, performance is the biggest issue

for Java programmers. Performance of Java
programs, in relation to C and C++ pro-
grams, necessarily suffers because of the
following reasons:
• Java is an interpreted language, and by

nature integrated languages run slowly. A
lot of work is being done to improve per-
formance while remaining in an interpret-
ed environment (e.g., Just In Time [JIT]
compilers). However, performance will
never catch up with compiled languages.

• Garbage collection contributes to perfor-
mance degradation, especially in large
programs.

• Java is a richer and more secure language

than C and C++. It offers features such as
serialization and reflection that are inher-
ently inefficient although they significant-
ly enrich the language. Also, Java per-
forms checks at runtime, such as bounds
checks for every array reference that
causes a degradation in performance.
Good profilers are important with Java.

Information provided by profilers can help
developers modify their programs to run
faster. Furthermore, a certain amount of

code optimization during the compilation
process can also improve performance. For
example, field access can be inlined, and
certain classes and methods can be made
final during final packaging of a system.

Threads
Given that threads are an integral part of

the Java language, there has been a signifi-
cant increase in thread use to solve prob-
lems more elegantly than within a sequen-

The Metamata toolsuite is a set of tools aimed
at enhancing the productivity of Java devel-
opers and improving the quality of their Java
software. The toolsuite complements and
enhances the functionality of standard IDEs
and has been designed to be used alongside
them.
The toolsuite provides the following funda-
mental features:
1. Java source file processing: The Metamata

toolsuite processes Java source files in all
their detail, in addition to compiled Java
object files (class files/bytecode files). This
is in contrast to other tools that process
only compiled Java files or depend on the
JDK to perform this processing. By pro-
cessing Java source files, Metamata's tool-
suite offers developers two advantages.
First, the toolsuite can be applied on Java

files that may fail to compile – many times
due to problems that are identified by the
toolsuite itself. Consequently, the toolsuite
can be used for maximum gain much ear-
lier in the software development life cycle.
And second, all possible information
about the Java source file is available to
the toolsuite. Object files lose information
(such as overloading details) and therefore
tools that process only these are inherent-
ly limited in their capabilities.

2. Incrementality: The Metamata toolsuite is
able to incrementally update its knowl-
edge of a Java system when it’s changed
(for example, by editing files through an
IDE).

3. Written in Java: The Metamata toolsuite
is written completely in Java. It there-
fore addresses all the issues related to

The Metamata Toolsuite

40 • VOLUME: 3 ISSUE: 10 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

tial framework. However,
programming with threads is
inherently more complex

than sequential programming because
there are more ways in which multiple
threads of control can interact with each
other and as many ways for things to go
wrong. Furthermore, it’s usually difficult to

reproduce a problem caused by the inter-
action between threads since multithread-
ed programs are nondeterministic in their
execution.

A lot of research has been devoted to
understanding the issues of multithreaded
systems over the past 20 years. The Java
language design offers state-of-the-art fea-

tures based on this research, which does
contribute to simplifying thread-based sys-
tems. However, a good language alone is
not enough – there’s also the need for good
debugging and analysis tools to facilitate a
better understanding of how a multithread-
ed system works.

I believe the best way to deal with
threads is to have a diagnostic capability in
which probes are permanently inserted
within the Java program. These probes
save information pertaining to program
execution, which can then be used later to
analyze the program’s behavior. This analy-
sis can be performed to ensure that certain
properties always hold (e.g., no two
threads simultaneously execute a certain
portion of code).

Safety
When building large systems a lot of

assumptions are made regarding how the
system works. If the system is correct, these
assumptions are met by the system execu-
tion. However, since bugs in software are
always expected, these assumptions may
not always hold. The debugging process
essentially means running the system in a
controlled manner to determine if these
assumptions are met, and looking for ways

to make corrections when they aren’t.
In mission-critical systems some

assumptions are important and require
enforcement. Similarly, in multithreaded
systems where it’s often impossible to
reproduce a problem, the violation of any
assumption must be reported.

Providing diagnostic APIs solves this
problem, allowing assumptions to be built

portability. The toolsuite has already
been ported easily to Windows and
UNIX platforms.

The Metamata toolsuite currently includes
four tools – a source code browser (Meta-
mata Browse), a debugger and command
line interpreter (Metamata Debug), a code
quality analyzer (Metamata Audit) and a
quality/complexity metrics evaluator
(Metamata Metrics). Additional tools
planned later this year include a memory
and time profiler, and a packager.
Metamata Browse
Metamata Browse is a source code brows-
er that understands the semantic structure
of Java. It allows navigation through
source code in an intelligent manner (such
as locating declarations and uses of vari-
ables).
Metamata Debug
Metamata Debug is a Java debugger and
command-line interpreter especially
geared toward complex and mission-crit-
ical systems. It enables rapid prototyping
and debugging of partially written pro-
grams. It offers all the standard debug-
ging features such as breakpoints, watch-
points, single-stepping and evaluating
expressions. The command line inter-
preter allows one to type free-form Java
code and get it executed, thus greatly
simplifying the debugging process – there
is no need to write a specific main pro-
gram to perform execution. It provides a
good user interface for thread debugging,
with separate command windows for
each thread.
Metamata Audit
Metamata Audit evaluates code for pro-
gramming errors, weaknesses and style
against a set of standard principles that
define good coding practices. It helps
improve the performance and quality of
the code and makes it more uniform, easy
to understand, robust, extensible and
clean. It provides hyperlinks into Metama-
ta Browse to obtain more details of the
errors. Metamata Audit implements
approximately 50 rules from a set of 150.
The remaining 100 will be implemented
over the next few months. Examples of
what it checks for are unnecessary type

casts, catching too general an exception,
excessive visibility and dangerous over-
loadings.
Metamata Metrics
Metamata Metrics calculates global com-
plexity and quality metrics on portions of
code. It provides meaningful object-orient-
ed metrics tuned for Java to enhance soft-
ware processes and quality of team-based
projects, optimizes testing and mainte-
nance resources and improves project
planning activities. Information is dis-
played graphically, as well as saved as
reports.

Metamata Metrics implements all the
standard complexity metrics that have
been well studied in the QA community
as indicators of bad organization, bad

structure, maintenance problems, etc.
Metrics such as cyclomatic complexity
and lines of code offer a more syntactic
insight into complexity, while metrics
such as lack of cohesion of methods and
coupling between objects go further to
understand the semantic structure of the
software.

The Metamata Toolsuite (continued)

41VOLUME: 3 ISSUE: 10 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

into the program as constraints that must
hold during the program’s execution. Tools
to help manage them are needed to encour-
age users to write such constraints. One
important capability necessary to encour-
age using diagnostic constructs is an easy
way to strip out these constructs when it’s
time to package the system for final ship-
ping.

Portability
Compiled Java files can be moved to dif-

ferent platforms and executed using differ-
ent Java Virtual Machines with no recompi-
lation required. To facilitate portability, the
Java language definition has gone to great
lengths to specify exactly how a Java pro-
gram must run. Very little ambiguity
remains.

Only a few problems exist in writing
portable Java applications. The most
important:
• Thread scheduling can vary from plat-

form to platform. For example, one plat-
form may provide small-time slicing for
thread swapping while others may not.
This can cause system liveness to differ
on various platforms.

• Use of platform-specific notation – the
most obvious example is to refer to a file
as a raw string (such as "C:\METAMA-
TA\Test.java"). Clearly the presence of
such a string in a program will cause it to
perform poorly on a UNIX platform.

• Bugs in Java compilers and Virtual
Machines can cause an otherwise correct
program to behave differently in different
environments.

• User of nonstandard APIs: certain APIs are
available on only a few platforms. Making
your program depend on such APIs will
(obviously) cause porting problems.

While these problems are really quite
trivial when compared to the issues
involved in porting programs written in
other languages, the promise of “write
once, run everywhere” exacerbates these
problems when developers expect their
Java program to run smoothly everywhere.

The only real way to solve this problem
is to test Java systems on as many platforms
as possible. In addition, several heuristics
to writing portable Java programs have
been developed over the past couple of
years. Facilitating portable testing and
checking Java programs for certain porta-
bility heuristics violations can help devel-
opers in writing portable Java programs.

Developing Multiplatform
Applications

There’s no better approach to facilitate
this development than to perform develop-
ment on multiple platforms. Ideally, individ-

ual developers should already work on dif-
ferent platforms. It must also be possible
for the same developer to move between
platforms.

The message here is that development
must be performed using tools that port to
multiple platforms. An IDE that runs on
only one platform can be severely con-
straining on a development team building
multiplatform software.

Platform Accessibilty
If a Java application is developed, taking

care to ensure that it’s portable, and then
shipped for use by customers on a wide
variety of platforms, you can be sure that
customers will run the application on plat-
forms you don’t have access to. Further-
more, there are bound to be problems
reported by these customers. Special care
needs to be taken to ensure that it’s possi-
ble to support them.

One thing to do is to ask the customer to

run a general probing tool that provides full
information on the customer’s Java envi-
ronment. It’s also useful to have a version of
the software that’s heavily instrumented
and then ask the customer to attempt to
reproduce the problem using this instru-
mented version. Usually, it should simply
be the shipped application running with a
special environment setting. Then it’s pos-
sible to study why the application runs dif-
ferently on the customer’s machine.

Build Reusable Libraries
Java encourages better organization and

maintenance by making it much easier
(compared to other languages) to build
reusable libraries of software components.
Widespread reuse of third-party compo-
nents is common and developers tend to
build ones that are as general and reusable
as possible. This leads to a software bloat,

which occurs when the system contains a
large amount of useful functionality that’s
never used by the system itself but exists
for possible future use. In many cases it’s
difficult to identify the “system” from a set
of reusable libraries.

As a result, it’s necessaray to trim these
libraries down to only the essential pieces
of code to enable systems to be packaged
for release.

Obfuscation
Compiled Java code is rather high-level.

Hence it’s possible for someone to (illegal-
ly) reverse-engineer compiled applications.
Therefore, care needs to be taken to prop-
erly obfuscate the compiled code so that it
still runs in the same manner but looks dif-
ferent. There are a variety of ways to obfus-
cate Java code, from schemes as simple as
changing the names of variables to sophis-
ticated schemes where the compiled Java
code is encrypted. However, regardless of
the scheme used, it must be possible to
interpret error messages, stack traces, etc.,
for customer support purposes.

Conclusion
Java has been adopted rapidly by both

industry and academia, and software devel-
oped in Java is growing in complexity. The
challenge to Java-tool developers so far has
been simply to keep up with the pace of
growth. Now they face a greater challenge of
building tools designed to solve specific
issues related to software development in
Java, rather than simply to retrofit C and C++
technology for Java. Over the next few
months we should see many new and excit-
ing tools to solve problems related to, for
example, garbage collection, performance
and portability.

One year ago a 100,000-line Java program
was large and there were only a handful of
them. If a system could handle tens of thou-
sands of lines of code, it was good enough.
Today many Java programs exceed 100,000
lines, and soon we should start seeing a few
programs reach a million lines of code. Tool
builders will therefore be required to scale
up their tools to handle such large systems
efficiently.

We should also see new Java Virtual
Machines capable of running much faster
than current ones and significantly closing
the gap between native code and interpret-
ed execution. There’ll also be native Java
compilers that can compile code to execute
natively on a platform-by-platform basis.
The performance issues will essentially dis-
appear once this happens.

These are very exciting times indeed for
the Java community and I look forward to a
more mature set of Java developer tools at
next JavaOne!

“…properly obfuscate

the compiled code so

that it still runs in

the same manner

but looks

different.”

Cold
Fusion
Journal
.com

43VOLUME: 3 ISSUE: 10 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

There’s a problem faced by all Web
designers: making a menu look interesting
without taking forever to load.

Many modern applications address this
problem using active menus that indicate
where the mouse is by changing the color
of the menu items as the mouse cursor
passes over them. (Pull down any stan-
dard menu on a Windows machine to see
this in action.) On Web pages this is often
done by a JavaScript application that
swaps images, but this technique is slow,
and it doesn’t work in all browsers.

In this article I’ll show how to build this
kind of active menu with text, not graph-

ics. This “change style on hover” feature is
built into Dynamic HTML in Microsoft
Internet Explorer, but in Netscape Commu-
nicator 4 this trick requires cascading
style sheets, layers and JavaScript.

This technique saves download time by
using text menus instead of images.
There’s only one connection from the
client to the server, and the text is much
smaller than an image of text, even with a
few hundred bytes of JavaScript. In addi-
tion, since the entire menu is in one HTML
file, configuration control is easier when
you need to update your menu.

The Easy Way
Doing this in Microsoft Internet Explorer 4

is easy, thanks to style sheets. There’s a
quick example shown in Listing 1.

There are three things to notice here.
First, we’re using cascading style sheets,
as described at www.microsoft.com/
msdn/sdk/inetsdk/help/dhtml/dhtml.htm.

Second, the STYLE tags use HTML com-
ments, !-- and --, to hide the style descriptions
from older browsers.

Third, the hover pseudoclass is defined
with a gray background and italic font. See
www.eu.microsoft.com/msdn/sdk/inetsdk/h
elp/dhtml/references/css/hover.htm for
details.

But this doesn’t work in the most popular
browser, Netscape 4. To do this, we need to
mix several techniques: a little JavaScript,
Netscape’s inline layers and style sheets.

Active Menus
Without Graphics

PROGRAMMING TECHNIQUES

by Ken Jenks

Active menus for Web pages using cascading
style sheets, layers and JavaScript

Change Link Color on Hover, MSIE 4 Only

<!--
A { text-decoration: none; font-weight:bold; color:blue; font-fam-
ily:Helvetica, Arial, sans-serif;}
A:hover { background: #AAAA80; font-style: italic; } /* MSIE Only
*/
-->

<BODY BGCOLOR="#8080FF">

Change Link Color on Hover, MSIE 4 Only

E. A.
Poe Society of Baltimore
Poe Museum

Change Link Color on Hover
<STYLE TYPE="text/css">
<!--
A { text-decoration: none; font-weight:bold; color:blue; font-fam-
ily:Helvetica, Arial, sans-serif;}
A:hover { background: #AAAA80; font-style: italic; } /* MSIE Only
*/
.whitelink { color: white }
-->

<BODY BGCOLOR="#8080FF">

Change Link Color on Hover

<SCRIPT LANGUAGE="JavaScript">

<!--
do_the_layers = 0;
if (document.layers) { // Netscape 4.0 and friends

if (navigator.userAgent != 'Mozilla/4.03 [en] (X11; U; SunOS
4.1.3_U1 sun4c)') { // Exclude buggy version

do_the_layers = 1;
}

}
layer_number = 0;

// Calling this function like this:
// hover_link("http://tale.com/","Stories");
// ...will create a new layer with a link like this:
// Stories
// ...but the link will turn gray when the user holds his mouse
over it.
// The var layer_number ensures a unique layer name (layer1,
layer2...)
// for each link.

function hover_link(which_url,what_content){
hover_link_style(which_url,what_content,"");

}

// Just like hover_link(), but this one applies to link

function hover_link_white(which_url,what_content){
hover_link_style(which_url,what_content,"whitelink");

}

// Just like hover_link(), but this one applies the given STYLE
to link

function hover_link_style(which_url,what_content,which_style){
if (do_the_layers) { // If Netscape 4, create an in-line

✦ LISTING 2.

✦ LISTING 1.

44 • VOLUME: 3 ISSUE: 10 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

The Hard Way
Unfortunately, Netscape 4 doesn’t allow

you to change the style of an element on a
page after it’s been rendered on the screen, so
this hover thing doesn’t work. But it does let
you change the contents of layers at any time.
See http://developer.netscape.com/docs/man-
uals/communicator/dynhtml/contents.htm.

Each element of the following JavaScript
application works in both MSIE 4 and
Netscape 4, and is downward-compatible
with other browsers, as seen in Listing 2,
instead of having a link as in Listing 3.

In MSIE and older versions of Netscape,
the onMouseOver event triggers the
JavaScript make_bg_gray() function, but
because the global var do_the_layers is
zero, this will do nothing. (Same with
make_bg_null().) MSIE 4 will activate itsFigure 1: The active menu in Netscape 4

//layer...
which_layer = 'layer' + layer_number;
layer_number++;
document.write('<ILAYER ID="' + which_layer + '">');

q_layer = '\'' + which_layer + '\'';
document.write(

'<A HREF="' + which_url + '" ' +
'onMouseOver="make_bg_gray(' + q_layer + ')" ' +
'onMouseOut="make_bg_null(' + q_layer + ')" ' +
'>');

if (which_style == "") {
document.write(what_content);

} else {
document.write('' +

what_content + '');
}

document.write('</ILAYER>');

} else { // If not Netscape 4, just make a normal link
document.write('');

if (which_style == "") {
document.write(what_content+'');

} else {
document.write('' + what_content

+
'');

}
}

}

function make_bg_null (which_layer){
if (do_the_layers) {

document.layers[which_layer].bgColor = null;
}

}

function make_bg_gray (which_layer){
if (do_the_layers) {

document.layers[which_layer].bgColor = '#AAAAAA';
// setTimeout because onMouseOut event doesn't always trigger
setTimeout(make_bg_null, 3000, which_layer);

}
}
//-->
</SCRIPT>

<TABLE BORDER=1><TR><TD>

<SCRIPT LANGUAGE="JavaScript">
<!--

hover_link("http://www.nps.gov/edal/","National Historic Site");
//-->
</SCRIPT>
<NOSCRIPT>
National Historic Site
</NOSCRIPT>

|

<SCRIPT LANGUAGE="JavaScript">
<!--

hover_link("http://www-scf.usc.edu/~khachato/poeraven.html","The
Raven");
//-->
</SCRIPT>
<NOSCRIPT>
The
Raven
</NOSCRIPT>

|

<SCRIPT LANGUAGE="JavaScript">
<!--

hover_link("http://www.poemuseum.org/","Museum");
//-->
</SCRIPT>
<NOSCRIPT>
Museum
</NOSCRIPT>

</TD></TR></TABLE>

<SCRIPT LANGUAGE="JavaScript">
<!--

hover_link_white("http://raven.ubalt.edu/features/poe/poecanat.htm"
,"E. A. Poe Society of Baltimore");
//-->
</SCRIPT>
<NOSCRIPT>
E. A.
Poe Society of Baltimore
</NOSCRIPT>

<SCRIPT LANGUAGE="JavaScript">
<!--

hover_link_white("http://pariah.simplenet.com/Poe/poe2.html","The
Comic Book");
//-->

45VOLUME: 3 ISSUE: 10 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

hover pseudoclass normally, giving us the
same effect as in the simple previous
example.

But Netscape 4.0 (and any other
JavaScript-compatible browser supporting
layers) will use the onMouseOver and
onMouseOut events to trigger
make_bg_gray() and make_bg_null() to
change the background color of the inline
layer (ILAYER). Slow computers like my old
486 don’t always trigger the onMouseOut
event, so we always turn the background
back again three seconds after entry. Setting
the background color to null instead of docu-
ment.bgColor makes the area transparent, in

case you’re using a background image on the
page. (Because of the way we styled the
hover pseudoclass, MSIE 4 will show the text
as italic on hover; Netscape 4 will not.)

Unfortunately, a bug in the X Window Sys-
tem/SunOS version of Netscape 4 makes it
crash when this code is invoked, so we’ve put
in a little guard code, showing why it’s always
good practice to test your JavaScript code
under all available browsers.

Conclusion
This little program demonstrates some of

the advanced features of MSIE 4 and
Netscape 4, while retaining backward com-

patibility with older browsers. If you find a
use for these active menus or the techniques
you’ve learned here, drop me a line.

About the Author
Ken Jenks has been programming for more than 23
years. He holds a BS in computer science, an MS in
aerospace engineering and is working on a Ph.D. in
mechanical engineering. In his day job he works for
the federal government. Evenings and weekends he
runs a Web-based publishing company, Mind’s Eye
Fiction (visit http://tale.com). He can be reached via
e-mail at MindsEye@tale.com.

MindsEye@tale.com

</SCRIPT>
<NOSCRIPT>
The Comic
Book
</NOSCRIPT>

</BODY>
</HTML>

The Comic
Book

We’ll need a link like this:

<SCRIPT LANGUAGE="JavaScript">
<!--

hover_link("http://pariah.simplenet.com/Poe/poe2.html","The Comic
Book");
//-->
</SCRIPT>
<NOSCRIPT>
The Comic
Book
</NOSCRIPT>

✦ LISTING 3.

1/2 Ad

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

46 • VOLUME: 3 ISSUE: 10 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

JDJ o
JavaDeveloper

47VOLUME: 3 ISSUE: 10 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

online!
ersJournal.com

48 • VOLUME: 3 ISSUE: 10 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Henry Ford revolutionized manufacturing
with the first automated assembly line in
1913, incorporating the latest time-study
theories to make Model T’s flow through the
system “like the flow of water through a
pipeline.” His engineers and foremen repeat-
edly analyzed every task in the assembly
process to find ways to save valuable inches
and seconds.

A lot has changed over the last century.
The assembly lines of businesses today are
high-performance client/server computer
networks – including the Internet – that move
information quickly and efficiently, speeding
communications and shortening the busi-
ness cycle. Implementations of Java applica-
tions and applets have emerged as the lead-
ing technology to implement client/server
and Internet-based applications.

Just as Ford’s engineers and foremen
kept assembly lines moving smoothly, a
process called load testing helps system
developers isolate potential bottlenecks or
problems in Java-based applications and
applets. JavaLoad software from Sun
Microsystems helps developers understand
how these applications will behave and
react under a variety of load conditions
before being deployed.

JavaLoad Software
From a single point of control on any test-

ed client, anywhere in the network, Java-
Load software stresses and monitors both
the application under test and the network
to isolate problem areas at every system
level.

JavaLoad software creates virtual users
to perform a specific sequence of actions
that test the main functions of an applica-
tion. It’s multiple “users” generate workload
from a series of client workstations or PCs to
help answer critical questions about net-
work and application capacity and scalabili-
ty such as:
• How many concurrent users can the serv-

er or application handle?
• How does system performance respond to

configuration changes or system upgrades?

• What happens during peaks in usage?
JavaLoad software load-tests both Java

and non-Java enterprise applications across
large, heterogeneous environments to
ensure that any Java-based distributed
application is rock solid – end-to-end.

JavaLoad Software’s Commander
Network

The commander network is the heart of
JavaLoad software. Commanders generate
repeatable, targeted, client-side activity
and constitute a self-maintaining, distrib-
uted load-testing network. They’re
deployed on each host in the test network
to manage and conduct the activities of the
load test.

A Central Commander starts the load test
on all the hosts and maintains the network
time stamps, synchronizing virtual users

across the network to begin at the same time.
It also collects the results of the load test
from the individual commanders for deposit
in a central repository, where they’re stored
for future analysis alongside reusable test
component files that can be used to con-
struct future tests, saving time and money.

The effects of the generated load are
measured through JavaLoad software’s
Telemetry Service and executed by the com-
manders (which can be used on every plat-
form – client, middle-tier or server). They
can record:
• The response time of any type of client
transaction
• The number of active simulated users
• Memory and thread use of any Java pro-
gram involved in the application under test,
server or client
• System-level statistics including CPU use,
disk use and network performance.

The service can be customized to collect
specific application-level statistics and can
graphically display the telemetry data in real
time, or archive the data for postanalysis
and hard-copy report generation.

ANYTHING NEW UNDER THE SUN

Handling the Load: Peak
Application Performance

with JavaLoad Load Testing
by Matt Evans

System Requirements

Supported Platforms:
Solaris, Windows NT and any platform

containing a certified Java-compliant Virtu-
al Machine supporting JDK versions 1.1.4,
1.1.5 and 1.1.6.

System Requirements:
• 3 MB RAM per JVM
• 3 MB RAM per GUI client user
• 60 KB per network user
• Any additional requirements of the sys-

tem under test

The SunTest Suite Family
JavaLoad software is just part of the

testing solution. Sun’s SunTest Suite of Java
testing tools provides an integrated test
environment that lets developers leverage
the full power of Java technology in each
phase of an application’s development.

Additional Java Test Tools
from SunTest
• JavaStar: SunTest’s automated

software testing tool for testing
Java applications and applets
through their GUIs. JavaStar is
integrated to run under JavaLoad
software’s control to capture load
and performance data for the GUI
users.

• JavaScope: SunTest’s powerful,
but easy-to-use, test coverage
analyzer. JavaScope functions in
the background during testing to
monitor and ensure thorough test
coverage.

• JavaSpec: SunTest’s powerful tool
for API or class testing of Java
applications helping you perform
formal specifications testing.

49VOLUME: 3 ISSUE: 10 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

JavaLoad Console and Session
Profiles

The JavaLoad Console is the powerful
graphical user interface that controls and
continuously monitors the JavaLoad soft-
ware load-test network across the enter-
prise. It’s the portable point of control from
which developers can design, launch, moni-
tor and analyze the results of load-testing
sessions.

The JavaLoad Console is the central
place where the separate components of a
load test – tasks, telemetry channels, virtu-
al users and commanders – are pulled
together into a Session Profile. The Session
Profile instruction file defines what each
particular load-test run should do, provid-
ing a blueprint for each aspect of the test
such as:
• Which tasks are to be performed
• Which telemetry channels to use for sys-

tem measurement
• The session’s number of virtual users
• Which commanders are included in the

test

To ensure that the right changes are
made to right problems without creating
new ones, JavaLoad assigns a new session
ID each time the load test is run so that
each set of results can be compared with
earlier tests.

JavaLoad software leverages the anima-
tion capabilities of Java technology to dis-
play real-time graphical reporting. The
JavaLoad Console also generates standard
and customizable load-test reports for com-
paring different test sessions.

WebLoader and DataProxy plug-ins are
available with the software, allowing it to
record and replay HTTP events and JDBC
and Socket messages as tasks within a nor-
mal Session Profile.

WebLoader: No Browser Required
WebLoader captures and replays HTTP

events (the kind that occur on any Web
browser) to test a Web or proxy server’s
performance and load-test Web-based
applications.

WebLoader captures and records a
browser’s interaction with any number
of Web servers in the form of HTTP
events, independent of the particular
type of browser used. It then creates a
Java program that faithfully replays
these recorded events without the need
for a browser within a regular Session
Profile.

The freedom of replaying HTTP events
without a browser means the WebLoader play-
back program can be easily replicated and dis-
tributed over the entire test network to simu-
late a few dozen to thousands of users concur-
rently accessing a Web-based application.

DataProxy: Java Database and
Socket Messages Captured

DataProxy enables JavaLoad software
to capture Java Database (JDBC) and
Socket messages in a form that can be
replayed as normal tasks within the load-
test Session Profile. DataProxy controls
the launch of a Java application in order
to capture JDBC or Socket network traffic
traveling between client and server,
regardless of protocol. Once it intercepts
the messages, DataProxy records them to
a data file and generates Java source code
for a JavaLoad program that’s able to mul-
tiply and replay the JDBC or Socket mes-
sages within a Session Profile. The server
receiving the messages captured by Dat-
aProxy can’t detect any difference
between the replicated messages and the
originals.

JavaLoad software’s ability to simulate
a wide variety of protocols frees develop-
ers to generate significant system loads
without excessive amounts of hardware
testing.

Load Testing in Heterogeneous
Environments

Today, applications in many sectors,
including e-commerce, the Web, banking,
telephony, order-entry, ERP, call center
and manufacturing, need load testing.
Because Java technology links together
heterogeneous environments, load test-
ing these applications becomes more
important than ever. With virtue of JavaL-
oad software being written in Java pro-
gramming language, developers don’t
have to pay extra for each platform. This
means all Java-compatible platforms can
be used for load-testing, which yields a
more thorough and realistic load-test of
both client and server. Sun Microsystem’s
JavaLoad software can be used through-
out the product development life cycle,
and is unique among load-testing tools
because it can validate architectures,
benchmark hardware and stress the inte-
grated system.

For more information about the JavaL-
oad member of the SunTest suite contact
your SunTest product specialist, or call 1
888-TEST-JAVA.

About the Author
Matt Evans is the principal developer of JavaLoad
as well as the manager of the SunTest tool suite
engineering team at Sun Microsystems in Menlo
Park, California. With Sun for more than eight years,
Matt focuses primarily on development and manage-
ment of projects in the area of software verification
technologies. Matt can be reached
at matt.evans@sun.com.

ObjectMatter.com

matt.evans@sun.com

50 • VOLUME: 3 ISSUE: 10 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Persistence in Enterprise JavaBeans is
encapsulated in the notion of EntityBeans.
This article describes bean- and container-
managed EntityBean persistence and the
relative merit of these techniques with
respect to portability, productivity and per-
formance.

Sun Microsystems produced the Enter-
prise JavaBeans specification (version 1.0)
in March 1998. According to its cover page,
the goal of the specification was to provide
a “component architecture for the develop-
ment and deployment of object-oriented
distributed, enterprise-level applications.”
Two important conceptual components
were described by this architecture: “Enter-
priseBeans” and their “container.” Enter-
priseBeans are of two varieties: Session-
Beans and EntityBeans. SessionBeans
don’t have persistent state; EntityBeans
do. In other words, you can’t expect the
state of SessionBeans to outlive their
process. EntityBeans on the other hand
have some or all of their state persist
between incarnations.

EJB Architecture Overview
To discuss EntityBeans and their persis-

tence, we first have to outline the compo-
nents of the EJB architecture that will be
important to our discussion. This section
won’t attempt to describe all the compo-
nents, only the relevant ones.

From a bean implementer’s point of
view, the first decision is whether the bean
is going to be a SessionBean or an Entity-
Bean. Both can have business logic but,
generally speaking, SessionBeans are
unshared servants to a client and have no
persistent state. EntityBeans are shared
among clients and do have persistent state.

For every bean there is a set of other
interfaces that must be in place for the
bean to be accessible to clients. Each bean
must have a mandatory remote object
interface as well as a Home interface (think
factory). The EJBObject-derived interface is

a remote interface that typically delegates
calls to the bean; the EJBHome-derived
interface contains bean lifecycle and man-
agement functionality. The home interface
is also remote.

You’re probably asking yourself, Where
does this so-called “container” fit in? Well,
from a bean-provider perspective, every-
thing that facilitates the life cycle of the
bean and the dispatch of a remote client
method invocation to your bean is “the con-
tainer.” For the purposes of this article, this
includes the EJBObject- and EJBHome-
derived remote interfaces (which are appli-
cation-dependent) as well as services like
the implementation of JTS and JNDI (which
are application-independent) that your
bean can depend on. Some containers may
also support container-managed persis-
tence. This is an API that an EntityBean
developer can use to delegate the persis-
tence of the bean to instead of writing all of
the persistence himself (by using JDBC or
JSQL).

Figure 1 shows the relationship of an
EntityBean (with container-managed per-
sistence), its container and the client. In
this figure the EmployeeBean is the imple-
mentation of all the logic for the bean.
Employee is just a remote object interface
declaration and the saame is true for
EmployeeHome. These three elements
along with a DeploymentDescriptor
(described later) are supplied by the bean
provider and are application-dependent.
Tools supplied by the container provider
will typically generate the implementations
of the remote interfaces.

These application-dependent compo-
nents wrap the bean for the container. We
say they “wrap the bean for the container”
because they’re mandatory and you can
access the bean only through them.

Application-independent components
are also part of the container, of course.
Figure 1 shows that developers can take
advantage of the application-independent

APIs, that is, JTS, JNDI and the container-
managed persistence (CMP) API. Notice
that in this figure, which depicts contain-
er-managed persistence, the container
can add connection pooling and transac-
tional caching as well as dynamic schema
management. These capabilities provide a
lot of transparent functionality to the
bean with container-managed persis-
tence.

Figure 2 is very similar except that the
bean provides its own persistence. Most of
the rest of the container is intact, but the
ability to provide caching, dynamic schema
management and connection pooling trans-
parently is lost. So in this figure the bean is
fatter because to write these capabilities on
top of JDBC would be a tremendous burden
on productivity. Plus your bean’s code is
just plain fatter.

Since this article is mainly about Entity-
Beans and how their persistence is man-
aged, we’re going to skip the discussion of
SessionBeans except to reiterate that
they’re unshared and typically don’t have
persistent state. They may, however, have
transactional, conversational state. Ses-
sionBeans will typically contain most of
your session-based (unshared between
clients) business logic. The good news is
that they’ll typically make use of other
EnterpriseBeans through remote-object
interfaces. This leads to a highly scalable
federated archictecture.

The Development/Deployment Process
As you can see, there is a substantial

amount of code needed to make an EJB
application server of any complexity. You
may wonder whether you need to write all
that code. Well, the development process
that you’ll follow will be highly dependent
on the tools supplied by your EJB applica-
tion server and development tool vendor
(which may be the same). A large part of
the code required is the glue that plugs
your bean into the container of your EJB
app server vendor. The fine folks who wrote
the EJB specification provided a nifty item
called the DeploymentDescriptor. This seri-
alized class is provided for each bean and
contains enough meta data for tools to gen-

JAVABEANS

Persistence in
Enterprise JavaBeans

Bean- and container-managed
EntityBean persistence and their merit

by Patrick Ravenel

http://www.JavaDevelopersJournal.com 51Java DEVELOPER’S JournalVOLUME 3 ISSUE 10 •

erate the framework to plug the
bean into an EJB container. This
would include the EJBHome,
derived class, the remote object
interface and other hooks to man-
age the bean.

Contained in a bean’s Deploy-
mentDescriptor is a ControlDe-
scriptor for each method. The
descriptors contain meta informa-
tion about the bean and its meth-
ods with respect to their behavior
in several dimensions (e.g., trans-
actional, security).

With the state of EJB implemen-
tations today, there are basically
three approaches to EJB develop-
ment: (1) hand-code everything, (2)
hand-code the bean and the
deployment descriptor and (3) gen-
erate most of the bean and the
deployment descriptor from a
graphical environment. Let’s look
at these in a little more detail.

Hand-Code Everything
This means that the EJB app

server doesn’t support any auto-
generation tools but does provide
the API for its container. In this
case you’ll be expected to write
implementations for the beans,
their remote object interfaces, their
home interfaces and any other
hooks required by the vendor’s
API.

Hand-Code the Bean and Descriptor
EJB was written with this in

mind. By producing a EJB-jar file
containing compiled code for
beans, their remote object and
home interface declarations, and
their associated serialized DeploymentDe-
scriptors, a tool could be used to generate
the rest of the infrastructure. In this man-
ner the container’s API doesn’t necessarily
need to be exposed to the programmer.
Rather, the code generator takes care of
this mapping. Figure 3 illustrates this
approach.

Graphical Bean and Descriptor Generation
For ease of use and EJB-jar file genera-

tion from a graphical environment can be
employed. In this development environ-
ment you simply create an object model of
the beans and their relationships. The
graphical environment takes care of gener-
ating the .jar file containing the beans and
their descriptors. Tools like PowerTier for
EJB from Persistence Software, Inc., take
this graphical approach and not only gen-
erate the container framework but also an
RDBMS-independent object-relational map-

ping for EntityBeans. Figure 4 illustrates
this approach.

The bottom line with respect to genera-
tion is that once you have the EJB-jar file
container-specific tools can then generate
the framework for adapting beans to their
container.

EntityBeans: The Persistence in EJB
Given an understanding of how Entity-

Beans fit into the EJB architecture, the
choice that a bean developer has to make is
between bean-managed and container-man-
aged persistence. How do you choose
between them? Well, let’s look at the rela-
tive merits of the approaches with respect
to productivity, performance and portabili-
ty. In a sense, the choice for developers is a
choice between fat beans, where the bean
is smart about data management, and fat
servers, where the EJB container is smart
about data management.

Container-Managed Persistence
For container-managed persistence the

EJB container automatically implements
the object-relational mapping services for
the bean. The EJB container uses addition-
al meta information in the deployment
descriptor to determine how to implement
the object-relational mapping for the bean.
This makes the bean itself “thin” because
the bean only needs to contain the custom
business logic added by the developer. Fig-
ure 2 shows this notion of “thin” beans and
a “fat” container. Figure 1 shows this type of
architecture.

The main advantages of container-man-
aged persistence are performance, run-
time/development-time flexibility and pro-
ductivity.

EJB containers with container-managed
persistence can provide data management
services that are unavailable with bean-
managed persistence, including:

JTS

JNDI

JNDIRef

JTSRef

EmpRef

Client

Server Process DBMS

EmployeeHome

EmployeeBean

Employee

Transactional
Object Cache

CMP
API

Dynamic
Schema Mgr

ContainerMgr

Import Remote Interfaces

Export
Remote
InterfacesExplicit Tra

nsactions

Implicit
Transactions

Co
nn

ec
tio

n
Po

ol

Figure 1: Container managed persistence architecture “thin bean-fat container”

JTS

JNDI

JNDIRef

JTSRef

EmpRef

Client

Server Process DBMS

EmployeeHome

EmployeeBean

Employee
JDBC

ContainerMgr

Import Remote Interfaces

Export
Remote
InterfacesExplicit Tra

nsactions

Implicit
Transactions

Figure 2: Bean Managed Persistence Architecture “fat bean-thin container”

52 • VOLUME: 3 ISSUE: 10 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

• Object-relational mapping: automates the
task of mapping complex beans – includ-
ing inheritance, aggregation and associa-
tion – to relational tables.

• Shared transactional caching: many
clients can share access to beans in the
EJB container with the same transaction-
al integrity provided by a database.

• Object state management: container-man-
aged persistence can keep track of which
objects have been changed within a
transaction. In bean-managed persis-
tence it’s up to the developer to manage
this, usually by setting a dirty flag in each
object.

• Object management optimizations: the
container can support joint database
queries in the database that return net-
works of heterogeneous beans and
enable navigation between bean classes
in the container cache.

• Data management optimizations: the con-
tainer can defer write operations in a
transaction until commit, then batch mul-
tiple database operations into one call.

• Connection management: the container
can transparently manage database con-
nections and implement native database
operations for optimal performance.

• Container-based agents: the container can
monitor events within the server and
notify clients when specific events occur.

To develop a class with container-man-
aged persistence, the developer performs
the following steps (this example describes
the Persistence Software, Inc., PowerTier
for EJB container):
1. Define the object model and object-rela-

tional mapping using a CASE tool.
2. Use the EJB container tools to load the

modeling information from the CASE tool
and generate beans whose deployment
descriptors and implementations allow
them to use container-managed persis-
tence.

3. Add custom code to the bean class (code
insertion points protect the custom code
when the bean is regenerated).

The generated beans implement all
required EJB methods but add convenient
query methods and methods for complex
relationship management. The container
provides transparent connection manage-
ment, exception handling, integrity and
transactions.

In addition to enabling rapid application
development, container-managed persis-
tence also makes enterprise bean classes
independent from the database schema.
Thus beans that use container-managed
persistence are more flexible and are
portable across data schemas. Changes to
the object model or database schema are
handled by the container’s object-relational
mapping, providing a high degree of flexi-
bility and support for iterative develop-
ment. Finally, containers whose implemen-
tation of Container Managed Persistence
includes shared and transactional caching
can provide extreme performance and scal-
ability advantages because they can man-
age concurrent transactional access to the
bean from multiple clients.

The main disadvantage is that they
aren’t as portable as bean-managed persis-
tence beans with respect to the current EJB
specification. This is mainly because EJB is
underspecified in the area of a portable

container API for container-managed per-
sistence.

Bean-Managed Persistence
For bean-managed persistence the

developer writes database access calls
using JDBC and SQL directly in the methods
of the bean. This makes the bean itself “fat,”
requiring hundreds of lines of developer
code to implement each bean. On the other
hand, this makes the EJB container rela-
tively “thin,” giving it a small footprint and
high portability. Figure 2 showed this
notion of the “fat” bean with a “thin” con-
tainer.

The main advantage of bean-managed
persistence is its portability. A bean manag-
ing its own persistence using JDBC or JSQL
is very portable, especially with respect to
the current state of the EJB specification.

The main disadvantages of the bean-
managed persistence approach is that writ-
ing the object-relational mapping by hand
can be time consuming and requires exten-
sive knowledge of SQL. For example, the
developer must hand-code database access
calls that implement the object-relational
mapping in the enterprise bean callback
methods (ejbCreate(), ejbLoad(), ejb-
Store(), etc.).

Another severe limitation of this
approach is that it hardwires the mapping
to a particular database schema into the
guts of the bean. This means that any
change to the object model or the underly-
ing database schema can require extensive
changes to the code for a particular bean,
limiting the flexibility and reusability of
beans built using bean-managed persis-
tence.

To develop a class with bean-managed
persistence, the developer must perform
the following steps:
1. Define the object-relational mapping for

the bean.
2. Implement required EJB class methods.

Using the JDBC API and SQL, write meth-
ods to perform ejbCreate(), ejbRe-
move(),ejbLoad(),ejbFind<>() and ejb-
Store(). This requires a detailed knowl-
edge of SQL and the underlying database
schema.

3. Implement accessor and mutator meth-
ods. For each attribute or relationship
write methods to manipulate the bean
value. Relationship access code to man-
age many-to-one relations and delete con-
straints can be very complex.

4. Manage database connections. Each
method must manage its own database
connections by interacting with the data-
base connection pool.

5. Handle exceptions. Each method must
handle both Java and database excep-
tions appropriately.

S
Y
S

-C

ON RADIO

w
ww.sys-c

o
n
.c

o
m

Java Business Expo &
Java Developer’s Journal

Award Ceremony

Tune
in for LIVE

coverage of…

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
Reader’s

CHOICE
 AWARD

SY
S-C

ON
 RA

DI
O

Only from…
SYS-CON
PUBLICATIONS

“…one severe
limitation is that it

hardwires the
mapping to a

particular database
schema into the

guts of the bean.”

53VOLUME: 3 ISSUE: 10 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Spirit
by eVisNet

http://www.evis.net

54 • VOLUME: 3 ISSUE: 10 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

6. Manage bean integrity. Any method that
changes the state of the class must set a
flag to mark the bean as modified so the
changes will be sent to the database.

7. Ensure transaction integrity. Collectively,
all the objects in any transaction must be
able to “roll back” their state if a transac-
tion fails.

8. Add custom code to the bean class.

Even if the SQL mapping were generated
for you, the gains in performance and flexi-
bility would not be as great as container-
managed persistence unless you wrote all
of the outlined features yourself…and then
you’ve thrown out productivity.

Finally, because you typically won’t find
shared and transactional cache manage-
ment in Bean Managed Persistence, it will
have extremely poor performance and scal-

ability since multiple
clients will block each
other for the entire
scope of their transac-
tions. This can be cost-
ly even in the case of
implicit transactions.

Conclusions
While bean-managed

persistence provides
the most portability, it
will generally fall short
with respect to produc-
tivity.

It should be clear at
this point that contain-
er-managed persis-
tence in EntityBeans
provides the most pro-
ductivity. This method
will also typically pro-
vide the highest degree
of performance since,
together, the code gen-
eration tools and the
bean programmer can
take advantage of con-
tainer-specific mapping
and caching technolo-
gy. However, container-
managed persistence
currently falls short in
the area of portability.

Below are some
guidelines for making
decisions with respect
to which kind of persis-
tence management to
use.

When to Use
Container-Managed
Persistence

Developers who’ll
benefit most from container-managed persis-
tence are those requiring rapid application
development, high reliability and scalable
performance in their deployed application.
• Rapid application development: produc-

tivity is the number one reason for
choosing container-managed persis-
tence. For simple beans, bean-managed
persistence can require 25 lines of hand-
written code for every line of hand-writ-
ten code required by container-managed
persistence. For more complex beans the
ratio is even worse.

• Reliability: the markedly smaller amount
of code the developer has to write using
container-managed persistence guaran-
tees fewer defects and higher reliability.

• Performance: container-managed persis-
tence allows use of shared transactional
caching, deferred database operations

and native database implementation to
optimize performance.

The kinds of applications that benefit most
from container-managed persistence
include:
• Data intensive applications: these applica-

tions tend to have larger and more com-
plex object-relational mappings.

• OLTP applications: these often require
good database performance, robust scal-
ability and rock-solid data integrity.

• Application integration: which must map
information from several different data
sources.

When to Use Bean-Managed Persistence
The primary reason for using bean-man-

aged persistence today would be to improve
portability for beans across servers from
multiple vendors. One known omission in
the Enterprise JavaBean 1.0 specification is
that it doesn’t define a standard API for EJB
containers to ensure portability among con-
tainers from different vendors.

This omission will have to be corrected
in the Enterprise JavaBean 2.0 specifica-
tion, as JavaSoft has announced that full
support for entity beans will be mandatory
in EJB 2.0. Even with bean-managed persis-
tence, however, the number of differences
between EJB 1.0 servers in areas such as
security and transaction management are
likely to make full portability difficult in the
next 12 to 18 months.

Future Directions in Portability and
Scalability

Container-managed persistence will be
made portable through standard deploy-
ment descriptor formats that can help
define the schema as well as standard meta-
data-driven internal container APIs for
transparent, portable, container-managed
persistence. This can be done in a fashion
similar to the OMG’s Persistent State Ser-
vice specification.

Speaking of the OMG, CORBA integra-
tion will be essential for any EJB app server
to be scalable to the enterprise. IIOP is the
perfect unifying protocol to support EJB
applications and is necessary to overcome
some of the limitations of JRMP, the most
serious of which are bugs in distributed
garbage collection (IIOP would do away
with DGC) and service context propagation
(without this, it is difficult to implement JTS
and other services).

About the Authors
Patrick Ravenel is director of distributed computing
for Persistence Software, Inc. He can be reached by
e-mail at patrick@persistence.com.

Bean.class
BeanDescriptor.class

...
Java.jar file

Descriptor Text Files
.des

Bean Files
.java

Figure 3: Hand-coding development process

Bean.class
BeanDescriptor.class

...
Java.jar file

Descriptor Text Files
.des

Bean Files
.java

File Edit View Window Help

Department
 DeptID - Key
 Name 1 *

Employee
 SSN - Key
 Name

Figure 4: Graphical development process

patrick@persistence.com

55VOLUME: 3 ISSUE: 10 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

InternetWorld
’98

MecklerMedia

http://www.mecklermedia.com

56 • VOLUME: 3 ISSUE: 10 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

The discussion about software engineer-
ing in the special environment of startup
companies continues with a focus on the
software life cycle model and the tracking
of requirements.

Software Life Cycles
According to classical software engi-

neering (SE), the development of software
takes place in stages. Each stage has dis-
tinct outputs, which can be tested before
you proceed to the next stage. They are:
• Analysis: The problem and requirements

for a solution are identified. Main output:
Software requirements document.

• Design: A software system is designed to
fulfill the previously identified require-
ments. Main output: High- and low-level
design documents.

• Implementation/coding: The software
system is implemented according to the
previously defined design. Main output:
Source code.

• Testing: Individual components as well
as the entire system are tested for fulfill-
ment of the requirements identified dur-
ing the analysis stage. Main output: Test
results.

Numerous models that describe the
arrangement of the individual stages and
the feedback among them have been sug-
gested. These are called the software life
cycle models. Some examples are the water-
fall model, spiral model and incremental
model, which are thoroughly discussed in
SE literature (for example, Software Engi-
neering: A Practitioner's Approach, 4th ed.,
by R. Pressman, McGraw-Hill).

Consciously following a life cycle model
lends structure to an otherwise amorphous
effort. When you can identify the end of a
stage, you know the time has come to per-
form specific tests, tests that enable you to
find errors at an early stage in the develop-
ment process. A major design flaw that can

be fixed with just a stroke of a pen during
the design stage may require major recod-
ing if discovered when the software’s
almost finished. It’s therefore important to
perform these tests not just at the end of
the development effort, but rather from the
beginning and throughout the process. A
lifecycle model facilitates this.

By testing the output of a stage, you pro-
vide a well-understood and firm foundation
for the team to build on. Once such a foun-
dation is set, it’s not supposed to change.
In the ideal case all team members know
what to achieve next, since this was set
forth in the previous stage in a nonambigu-
ous manner.

In a startup company, however, the soft-
ware life cycle is usually not well ordered.
Markets develop swiftly, and requirements
change even long after the analysis stage

has supposedly been completed. Time and
time again the engineering department
finds itself under pressure to do whatever it
takes to provide new features originally not
planned.

Is there a lifecycle model that not only
works under these conditions but also
helps to improve them? Of the many mod-
els developed, the incremental model
seems to lend itself most closely to the way
a startup company operates, but it requires
a few modifications.

As you can see in Figure 1, individual
releases of the software are developed in a
“pipelined” fashion. In theory this allows
the rapid release of new features for your
software. The incremental model works
well for conventional companies operating
in established markets, which use it to
reduce the complexity of an individual
release. Many of the features for the next
releases are already known through market
observation, feedback from customers of
other products, established marketing
channels and so forth. The more estab-
lished companies also have the resources
to maintain multiple parallel development
streams.

The life-cycle stages and tracking of requirements

by Juergen Brendel

Software Engineering
in Startup Companies

JDJ SPECIAL FEATURE PART II

Analysis Design Coding Testing

Rel. 1

Analysis Design Coding

Releases

Time

Testing

Rel. 2

Analysis Design Coding Testing

Rel. 3

Analysis Design Coding Testing

Rel. 4

Figure 1: Classical incremental life-cycle model

57VOLUME: 3 ISSUE: 10 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

The startup reality renders this model
impractical. Hiring qualified personnel is
particularly difficult for a startup. It’s unre-
alistic to assume that you’ll hire a team of
experienced analysts at the very beginning,
followed first by designers and then by
developers. In theory, software engineers
should be able to handle all phases of prod-
uct development. Unfortunately, the prolif-
eration of this title throughout the industry
has greatly reduced its value. Many people
who call themselves software engineers
really don’t have a thorough software engi-
neering education and often their experi-
ence is only in coding and maybe some
design. I am in the same situation and am
still learning. So while you can find many
software engineers, those with the neces-
sary skills, training and experience for all
product-development stages are few and
far between.

The overall head count in your company
is likely to be very low for an initial period,
only to increase quite rapidly later on.
Thus, in the beginning, each developer is
also in the position of analyst as well as
designer. Obviously, given the lack of per-
sonnel, you may not be able to do the analy-
sis for the next release during the design
phase of the first release. You have neither
enough resources nor sufficient market
feedback to begin the development cycle of
the second release right away. After all, you
haven’t even released the first version of
your product. Occasional feedback is
passed on to you by marketing and sales,
gathered from discussions with potential
customers. But you won’t get true cus-
tomer feedback until you’ve shipped the
first version to beta customers. Compared

to established markets that provide a
brightly illuminated playing field, a startup
operates in the dark.

During analysis – and design – you may
have to perform research to prove techni-
cal concepts or ideas on which you plan to
base your product. This may be done in the
form of a prototype, which provides feed-
back for the analysis and design stage,
adding complexity to the initial develop-
ment stages.

Quickly developing markets, initially
missing customer feedback and lack of
resources as well as analysis and design
stages influenced by research lead me to
suggest a modified incremental life-cycle
model for startup companies.

As Figure 2 indicates, analysis, research
and design are intertwined for the first
release. Analysis for the second release
begins at a later stage when two conditions
have been met:
1. Requirements for the next release are

available.
2. Enough new developers have been hired

to free the most senior developers to
work with marketing on the analysis
stage of the next release.

The analysis for the second release
starts after enough customer feedback has
been collected to get a good feel for what
the market wants. Without that feedback
there’s really no point in attempting to
release yet another version of a product
that may have had a lukewarm reception
the first time around. The feedback is
important and therefore needs to be prop-
erly analyzed and prioritized. You have to
resist the temptation to stuff all requested

features into the next release.
Once you have a product on the market,

you’ll get a constant stream of requests.
Thus, after the initial lag, you can start
working on new releases earlier and earlier
as staffing permits. The modified incremen-
tal life cycle model reflects this reality.

Also note that the research component
becomes less with each subsequent
release. The reason is simply that you’ve
established a core technology with the first
release from which you’ll continue to lever-
age. Yours is a commercial company, not a
research lab. It’s important for you not to
have too much research in the critical path
of your project as you progress, since
research can’t be scheduled properly.

By keeping the first release small and
simple, you’ll receive market feedback
sooner. Such early feedback is important to
align the company and its product with the
market. The longer it takes you to get feed-
back, the more time you spend developing
“blind,” in possibly the wrong direction.
Provide the core functionality in the first
release. The market will let you know in
which direction to go. Potential customers
are often willing to negotiate now if the
fancy feature they want can be promised to
them in an upcoming release. This lifecycle
model sets you up for quick releases to sat-
isfy customers without having to drastical-
ly change the requirements for an ongoing
development cycle.

Tracking Requirements
As we discussed in the first part of this

series (JDJ, Vol. 3, Issue 7), the analysis
stage will not be as rigorous as classical SE
would suggest. Many requirements are not

Analysis Design

Research

Coding Testing

Rel. 1

Analysis Design Coding

Releases

Time

Testing

Rel. 2

Analysis Design Coding Testing

Rel. 3

Analysis Design Coding Testing

Rel. 4

Res.

Figure 2: Modified incremental life cycle model

58 • VOLUME: 3 ISSUE: 10 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

known at all, or at least are not understood
enough to formulate them in a quantifiable
manner.

Yet it’s important not to drop a require-
ment accidentally through simple oversight.
Consequently you have to track as many
requirements as possible and as completely
as possible. The traditional tool used for
this task is the “traceability matrix.”

The matrix is essentially a table. The
individual requirements are written from
top to bottom and hence label the rows.
The individual development stages (analy-
sis, design, implementation, testing) are
written from left to right and label the
columns. Each cell of the table contains a
record of where and how the requirement
was addressed in that stage. For the devel-
opment of product documentation, either a
similar table should be created or docu-
mentation should become an additional
column in the matrix.

At the end of each development stage
each requirement should be checked to see
whether it has been addressed during that
stage. A look at the table will reveal any
omissions, which would be very costly to

fix in later stages of product development.
Such a matrix can save time and money.

A traceability matrix will provide a com-
pany with an important benefit. Since the
matrix records the trace of each require-
ment throughout the development stages,
it shows the team which aspects of the
product are affected by requirement
changes. If the actual design and implemen-
tation takes place in a modular fashion,
exhibiting low coupling and high cohesion
(see the previously mentioned article),
chances are that only those aspects of the
product mentioned in that feature’s matrix
row need to be modified. As discussed ear-
lier, flexibility and quick turnaround is a key
point, especially for startup companies.
The traceability matrix will facilitate such
fast reaction times.

Startups have two particular problems
with maintaining a traceability matrix. First,
as already mentioned, not all requirements
are known and not all are quantified. The
requirement itself may thus have to be for-
mulated in a very unspecific manner, mak-
ing it difficult to fill the matrix cells with
precise information. In that case the matrix

should still be maintained. Unquantified
requirements should be marked and revisit-
ed as soon as more information becomes
available. When that occurs the matrix will
aid in identifying those parts of the product
that need to be tested to see whether the
modified requirement is still fulfilled.

The second startup difficulty with trace-
ability matrices is the work required to
maintain them. On complex products a
very detailed matrix can fill hundreds if not
thousands of pages. Clearly, a compromise
needs to be made here. For starters, in
many cases it doesn’t have to be one mono-
lithic matrix covering the whole product.
Even though a complete matrix is always
recommended to achieve product com-
pleteness, a company might choose to have
each team maintain its own matrices. The
requirements within one subcomponent or
project are identified and listed in a matrix.
Maintaining such a smaller matrix is natu-
rally a much less resource-intensive task.
On the downside, overall product require-
ments may suddenly be listed in the matri-
ces of several product teams. In that case
some communication overhead is required
to keep these matrices in sync.

One might also choose to leave some of
the requirements generally undefined and
untraced. This is not at all ideal, but may
be necessary due to a lack of resources. In
that case the matrix should be limited to
requirements that somehow have been
deemed more critical than others. This
method is risky since it again allows some
requirements to be forgotten or not to be
traceable if a change is required.

A traceability matrix is a powerful tool
to ensure product completeness and a
quick trace of a feature’s “footprint” within
the product. Even though startup compa-
nies are likely to compromise on some
aspects of the matrix, it’s highly recom-
mended to keep it as complete as possible.
The payoffs are significant.

Design, implementation and change con-
trol will be the topic of the next installment
in this series.

About the Author
Juergen Brendel is a software architect at Resonate
Inc. He welcomes your feedback via e-mail at
jbrendel@resonate.com.

Requirements Analysis Design Coding Testing Docs

Comm packet size <500 bytes Spec, chapter 3.2 Design spec, SendPkt.send_it() case #304, #305 chapter 1.9,
chapter 3.3.4 “Sys.Requirements“

Pop-Ups for critical errors Spec, chap. 5.5-5.8 Design spec, Errors.display() case #238 chapter 3.7,
chapter 6.2.1, 6.3.9 Errors.pop_up() “Exceptions”

Figure 3: Sample traceability matrix

S
Y
S

-C
O

N
RADIO

www.sys-
c
o
n
.c

o
m

Hear Live Interviews
with the Major

Technology Vendors
from the Java

Business Expo at
www.SYS-CON.com

SYS-CON Radio Host Robert Diamond with Bill Carson of ServerLogic

JAVA
ON WEB
RADIO

JAVA
ON WEB
RADIO

jbrendel@resonate.com

59VOLUME: 3 ISSUE: 10 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

OMG
Object

Management
Group

http://www.omg.org

Java Development
Tools in Transition

The tools available to the Java developer exhibit several uni-
fying concepts, which provide a framework to explore the next
transition in Java-development tools.

The first development tool that many Java developers use is
the “javac” compiler that is bundled with the Java Development
Kit (JDK). This compiler translates Java source code into the
bytecodes that the Java Virtual Machine (JVM) executes. The
"javac" compiler is not sophisticated,
but it works and that’s enough to get
started.

Another tool that may be used is
“java” or “jre”, the runtime environ-
ments for the JVM. The JVM interprets
the bytecodes generated by the com-
pile to portably execute the compiled
program.

At this point the developer has
encountered two concepts. First,
"javac" uses the notion of static analy-
sis and static compilation to translate
the Java language source code into the
bytecodes stored in the class files. Sec-
ond, the tools "java" and "jre" both use
the concept of dynamic interpretation
to drive the execution of the program.

To improve these tools we can add
the concept of dynamic compilation.
The latest releases of the JDK include
a feature known as a Just-In-Time (JIT)
compiler. A JIT allows the software
developer to deliver the program in a portable format and to
defer optimization until the bytecodes are dynamically com-
piled into machine instructions on the host computer.

The class files in the application are not all compiled – that
would increase the delay between downloading the application
and starting its execution. A JVM enhanced with a JIT can leave
most of the program as bytecodes that are interpreted by the
JVM; but when the JIT wants to optimize the execution of a sec-
tion of the bytecodes, that section is dynamically compiled into
machine instructions to increase the execution speed with a
small compilation penalty.

The JIT model of dynamic compilation is great for clients
that are executing different Java programs. But for servers
which are always running the same Java program, it’s occa-
sionally better to compile the entire program into optimized

machine code for the target machine. This introduces the next
concept, native code compilation. Native code compilers are
like the "javac" tool we started with, except that they usually
employ sophisticated semantic analysis, sometimes with the
feedback of dynamically calculated information, to generate
optimized machine instructions. Since these tools are designed
to be occasionally executed, and the resulting program execut-
ed many times, these compilers can afford to do the extensive
analysis necessary to optimize the Java program.

We have seen that as Java development and execution
environments improve they usually incorporate increased
usage of dynamic analysis techniques. This union of the com-
pilation and execution models enables breakthrough tools
which can take advantage of dynamic techniques in exciting
new ways. Tools like profilers, feedback driven byte-code

optimizers, memory leak detectors, or
tools for source code coverage analy-
sis are made possible when dynamic
analysis is considered.

As an example of a novel applica-
tion of dynamic analysis, consider the
problems inherent when writing multi-
threaded Java programs. The Java run-
time is inherently multithreaded, and
Java supports explicitly multithreaded
programming through the definition of
a standard Thread class. But with this
power comes a price. It’s extremely dif-
ficult to prove that a multithreaded
program is thread-safe, without making
it inefficient by over-synchronizing all
of the classes.

By using the concept of dynamic
analysis, tools for multithreading
defect analysis can be built to deter-
mine which objects are not correctly
synchronized in the program and if the
usage of the synchronized objects

could cause the program to deadlock. Safe, correct, multi-
threaded programming in Java is practical and easy with tools
based on dynamic analysis that provide a safety net to find
overlooked problems.

The compilation, analysis and execution tools for Java have
evolved to encompass both the static and the dynamic modes
of operation. The Java developer gets the advantage and bene-
fit of this symbiosis in Java’s advanced development environ-
ments.

About the Author
Paul Petersen is a lead developer for KAI’s Assure. You can reach him at
petersen@kai.com.

60 • VOLUME: 3 ISSUE: 10 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

by Paul Petersen

Developers benefit from the
symbiosis of static and dynamic

modes of operation

“It’s extremely difficult

to prove that a

multithreaded program

is thread-safe, without

making it inefficient by

over-synchronizing all

of the classes.”

petersen@kai.com

61VOLUME: 3 ISSUE: 10 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Java JDK 1.2
Certification

Insider

http://www.certificationinsider.com

62 • VOLUME: 3 ISSUE: 10 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

KL Group Launches
New JavaBeans for
the Enterprise
(Washington, DC) – KL Group,
Inc., has announced the release
of JClass 3.5, a new version of
its popular family of JClass Jav-
aBeans providing powerful new

databound components.
Automatic databinding
is now built into many

of the JClass compo-
nents, and this
release intro-
duces an Enter-
prise Suite and
two new Jav-
aBeans, JClass
HiGrid and JClass

DataSource, that let
Java developers build

complete database applica-
tions without writing a single
line of code.

For more information, visit
KL Group’s Web site at
www.klg.com, or call Lee Garri-
son at 416 594-1026, ext. 545, or
e-mail him at lee@klg.com.

Sun and IBM
Introduce JavaOS
(Palo Alto, CA) – JavaOS for
Business operating system soft-
ware is available from Sun and
IBM. This product provides an

economical way for companies
to centrally manage business
applications using Java tech-
nologies in network computing

environments
The two companies also

announced related JavaOS for
Business support programs for
industry partners, including a
full spectrum of software tools,

testing facilities and edu-
cational assistance, to
enable them to build net-
work computing business
solutions.

JavaOS software is
specifically designed so
that companies can cen-

trally store and manage appli-
cations used to run their busi-
ness (such as inventory man-
agement or insurance claims

processing) from servers on a
network. The servers can be
connected to network comput-
ers and other thin clients such
as kiosks, ticket machines and
remote terminals.

JavaOS for Business pro-
vides advantages over person-
al computer operating systems
on networks because it
enables businesses to manage
the entire operating system,
services and applications from
a centralized server.

For more information, contact
IBM at www.ibm.com/java/javaos
or Sun at www.sun.com, or contact
Datek at www.batavia.com.

NetObjects Releases
NetObjects BeanBuilder 1.0
(Redwood City, CA) – NetOb-
jects, Inc., has announced that it
will brand, market and distribute
the next version of IBM’s sub-
sidiary Lotus Development Cor-
poration’s BeanMachine as
NetObjects BeanBuilder 1.0. The
product enables site builders
and Web developers to rapidly
assemble and deliver JavaBeans-
based Web applications by
working in a visual, point-and-
click environment, without any
programming.

The highlights of Bean-
Builder’s features are:

Schlumberger Announces
Smart Card
(Austin, TX) – Schlumberger
Smart Cards & Terminals has
introduced its most powerful
member in the Cyberflex family
of smart cards. Cyberflex Open
16K which
doubles the
amount of
memory
available for
application
software.

Its new features
also include a PC/SC interface
and fully integrates an applica-
tion processor, a smart card
and a smart card manager.

Schlumberger has the only
Web-based smart card support
program, with a user discus-
sion forum at
www.cyberflex.slb.com.

For more information visit
Schlumberger’s Cyberflex Web
site at www.cyberflex.slb.com
or www.slb.com, or call Michele
Bernhardt at 408 501-7145.

(Kuala Lumpur) – Datek has
announced the first Enterprise
Software Solution written to
Sun’s JINI standard for distrib-
uted computing. Datek is the

first Java software developer to
partner with Sun for its newly
launched JINI program. JINI
allows computers and devices
to have more intelligence in
communicating and sharing
with other computers across a
network, including those that
use different operating sys-
tems.

Madura, Datek’s flagship

ERP and supply chain manage-
ment (SCM) program, has been
released with complete general
ledger and systems administra-
tion modules. The program
emphasizes project accounting,
inventory tracking and job cost-
ing that allows corporations to
know precisely their profit and
cost of doing business for any
customer or project.

Datek and Sun are ready to
deliver on the notion of the
“Internet appliance,” making
computers and networks as
ubiquitous and easy to use as
consumer electronics devices.

For more information contact
Kamaralzaman Tambu at 603
456-2617 or by e-mail at
tambu@pc.jaring.my. Or visit
Sun’s site at www.sun.com.

Datek Delivers
on Sun’s

JINI Promise

(Herndon, VA) – MindQ Pub-
lishing, Inc., a Knowledge Uni-
verse Company, has annouc-
ned that IBM will bundle its
tutorial package, “Intro-
duction to VisualAge
for Java and Pro-
gramming Jav-
aBeans,” with
IBM’s new release
of VisualAge for
Java 2.0. The tutorial
features instruction that
will enable developers to
get the most out of VisualAge
for Java’s visual, team-cen-
tered, enterprise application
development environment. It
also includes a full tutorial on
creating and using JavaBeans.

MindQ’s “Developer Train-

ing for Java” curriculum uses
an interactive, multimedia
training system designed to
address diverse learning
styles. It was developed by
Java experts to meet the spe-
cific needs of beginners as
well as the advanced users.
“Essential Java Training” pro-
vides what a developer needs
to learn the fundamentals of

Java programming and pre-
pare for Sun’s Java certi-

fication. “Advanced
Java Topics,”
designed for devel-

opers who want to
become experts in
Java, contains com-

prehensive code samples
and reference material on

topics like JavaBeans and
Java APIs.

For more information, call
MindQ at 800 646-3008 or visit
their Web site at
www.mindq.com. IBM’s Web
site is at www.ibm.com.

MindQ Offers
Educational

Tutorial

��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��
@@
@@
��
��
ÀÀ
ÀÀ
��
��

63VOLUME: 3 ISSUE: 10 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

JDJ Editors’
Choice Awards

http://www.javadevelopersjournal.com

64 • VOLUME: 3 ISSUE: 10 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

ObjectSpace
Announces Voyager Pro 2.0
(Dallas, TX) – ObjectSpace has
introduced Voyager Profession-
al Edition, the next generation
of widely adopted standards
neutral, 100% Pure Java soft-
ware development platform for
distributed object computing.

VoyagerPro combines the
power of mobile autonomous

agents and
remote

method invo-
cation with

dynamic CORBA and
RMI compatibility – pro-

viding in a single code base the
first-ever seamless support for
the most widely used distrib-
uted object models.

Developer’s can remote-
enable Java classes without
modification and can write a
single line of code to dynami-
cally CORBA-enable Java
objects at runtime without
modification. The product pro-
vides fast and efficient delivery;
rich messaging; a multilayered,
scalable architecture; and
mobile autonomous agents and

Dynamic Aggregation.
For more information, visit

ObjectSpace’s Web site at
www.objectspace.com, or call
972 726-4100.

BulletProof Announces
JDesignerPro 3.0
(Los Gatos, CA) - BulletProof
Corporation introduces a new
visual server-side application
builder, which includes new
features such as the Method
Explorer, that facilitate the
development of Java modules
for server deployment.

The Explorer graphically

shows the breakdown of Java
classes. With existing tools
developers waste time trying
to determine the structure of a
Java class file. BulletProof’s

new tool allows a simple graph-
ical view, eliminating the need
to manually browse through
source code to understand
which methods called which
global variables, accessors and
other methods.

JDesignerPro also includes
the new SQL Wizard, which
allows developers to add SQL
statements to code with a few
mouse clicks – resulting in
flawless sytax.

For more information, visit
BulletProof’s Web site at
www.bulletproof.com.

CocoBase Enterprise 2.0
Available from Thought
(San Francisco, CA) –
Thought Inc. has
announced expanded fea-
tures of database access
framework with
CocoBase Enter-
prise 2.0. To make it
even easier to create an appli-
cation that ties to your data-
base and is high-performance
and scalable, the CocoBase
Enterprise Framework now
includes:
• State-of-the-art object model-

ing tool Together/J, which
can generate all of the data-
base connection code auto-
matically

• Polymorphism support for
custom instantiation facto-
ries on select() and call()

methods for relational data-
bases

• Automatic configurable
shared server-side object
caching to optimize and
increase performance

• Revised documentation
For more information visit

Thought’s Web site at
www.thoughtinc.com.

Industry Leaders Bundle
Zero G’s InstallAnywhere
Now!
(Irvine, CA) – ObjectShare will
bundle Zero G’s InstallAny-
where technology with upcom-
ing releases of PARTS for Java
products. In addition, Apple,
IBM and Inprise will also bun-
dle the product.

ObjectShare will also
extend its current “Delivery
Assistant” capabilities to send
files to InstallAnywhere provid-
ing a total development-to-
delivery solution.

InstallAnywhere Now! lists
at $149, and is available free to
all registered PARTS for Java
users. For more information,
visit www.objectshare.com.

(Summit, NJ) – Data Repre-
sentations, Inc., Has
announced version 1.1 of Sim-
plicity for Java. The product
is written completely in Java
and it lets developers build
Java applications and applets
interactively. Simplicity pre-
sents the user with a working
model of the
actual applica-
tion that they’re
creating. All
changes to the
code are immedi-
ately integrated
into this working

model without the user need-
ing to save and compile the
changes. This dynamic execu-
tion reduces the traditional
three-step code-compile-test
software development
process to a single step:
design.

For more information, call
Carl Sayres at 908
918-0396, fax 908
918-0397, email
carl@datarepresen-
tations.com, or
visit their Web site
at www.datarepre-
sentations.com.

Simplicity for Java™ Introduced

(Denver, CO) – Inprise Corpo-
ration has entered an alliance
with Sun Microsystems, Inc.,
to team Inprises development
technologies with the Sun
Solaris™ operating environ-
ment. Corporations will be
able to take advantage of
Inprise’s familiar and graphi-
cally appealing tools for for
building and running enter-
prise applications on the
robust and scalable Solaris
operating environ-
ment.

Inprise also
released JBuilder 2
earlier this year. It
allows corporations
to use the latest
100% Pure Java tech-
nologies (including
JDK 1.1.6 and
JFC/Swing) to rapidly

create platform-independent
business applications. The
high-end version of the prod-
uct, JBuilder 2 Client/Server
Suite, includes support and
integration for multiple JDKs,
application deployment, Enter-
prise JavaBeans, Java Servlets,
JFC/Swing components,
CORBA and high-productivity
cody Wizards.

For more information, con-
tact Inprise at www.inprise.
com or visit Sun’s Web site at
www.sun.com.

Inprise Joins Sun

65VOLUME: 3 ISSUE: 10 1998 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Pervasive
Software

http://www.pervasive.com/sdk-jd

66 • VOLUME: 3 ISSUE: 10 1998Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

The way some people hobble their
application servers, you’d think they
considered the server as pointless mid-
dleware. Most Java developers, however,
want to unleash their application servers
to do right by their applications.

“Doing right” in application-server
terms means getting the stuff an applica-
tion needs from various sources and
delivering stuff from the application.
When talking about data sources, getting
and delivering corresponds to reading
and writing data.

In general terms, application servers
get and deliver stuff to three broad class-
es of systems: relational databases, from
which it gets SQL results sets; legacy and
packaged applications, such as SAP, Baan
and PeopleSoft; and data emerging from
distributed objects on the network, such
as CORBA objects.

Over the next several columns we’ll
look at how application servers handle
each of these sources. In this column
we’ll begin by looking at the first source,
relational databases. This is probably the
most common source of data accessed
by application servers.

At first, getting SQL result sets from an
application server seems pretty straight-
forward. Pass your request through the
JDBC driver that comes with the applica-
tion server and presto! You have your SQL
results. In practice, however, it’s not so
simple.

For starters, many application
servers, whether purchased or built by
hand, are hardwired to proprietary data-
base drivers for popular databases,
which can hobble the application server.
While a proprietary driver may be
acceptable in the conventional
client/server environment, it presents
significant problems in the rapidly evolv-
ing Java world. Unlike the ODBC driver,
which is middleware, the JDBC driver
passes Java calls directly to the data-
base. Database vendors and other par-
ties continually bring out improved JDBC
drivers for each database.

As a result, developers want to retain
the flexibility to substitute the best JDBC
driver for a given database. If the appli-

cation server is hardwired to a particular
database driver, no matter how good it
was when first built (and it’s quite possi-
ble that it wasn’t very good even then)
you can be sure it won’t be the best now.
And it will really be an impediment com-
pared to whatever is out there six
months or a year from now.

What’s the best JBDC driver? It
depends. Some will deliver better perfor-
mance; others will consume fewer sys-
tem resources. Some will come from big-
name vendors offering tons of support;
others will come from hot little startups
that can’t even provide useful documen-
tation. Java developers like having these
choices.

But there’s more to the SQL result-sets
challenge than the JDBC driver. The
application server must also do an effec-
tive job of providing a cache of result sets
coming back from the SQL call. This isn’t
trivial, as anyone who has tried building
such a cache can attest. The cache must
be controllable by the development team
and should provide for threads that fill
the cache, if necessary. It’s also impor-
tant to provide governors that limit the
total number of rows captured to prevent
swamping the application server with an
unexpectedly large result set.

Finally, the application server must
allow for data binding of SQL data to
client controls. While this sounds obvi-
ous, it’s a sensitive issue that can
adversely affect quality, performance and
maintainability. The Java client must
have easy access to the data. And, once
again, an elegant and effective cache on
the client side is key.

The bottom line: getting SQL result
sets isn’t as simple as firing up any old
JDBC driver that comes with the applica-
tion server. In fact, you must think
beyond JDBC and consider cache and
client control.

Now that we’ve taken care of relation-
al data sources and SQL result sets, we
can turn our attention, in a subsequent
column, to legacy applications. Here we’ll
explore the problems that arise when the
legacy data doesn’t necessarily map well
into JDBC type structures. Stay tuned.

Getting SQL Results from
an Application Server:

It’s not as easy as you think

by Java George

Java George is George Kassabgi, director of
developer relations for Progress Software’s
Apptivity Product Unit. You can e-mail him at
george@apptivity.com.

THE GRIND

“Getting SQL

results sets isn’t

as simple as

firing up any

old JDBC driver

that comes with the

application server”

George@sys-con.com

http://www.JavaDevelopersJournal.com 67Java DEVELOPER’S JournalVOLUME:3 ISSUE:10 •

Voyager

http://www.objectspace.com

JProbe
by

KL Group

http://www.klg.com/jprobe

